Licence de Physique Appliquée aux Sciences de la Vie et de la Planète

LP 343 Lumière et couleurs 1

Epreuve du 28 septembre 2007 Correction

I. Structure de l'onde plane monochromatique plane dans le vide

On considère une onde électromagnétique se propageant dans le vide, et dont le champ électrique est de la forme:

$$\vec{E} = E_0 \exp[i(\omega t - kx)]\vec{u}$$

où E_0 est une constante. Caractériser cette onde et exprimer k en fonction de ω .

- 1. A un instant donné les surfaces de phase constante sont des plans parallèles entre eux d'équation x = Cte; c'est une onde plane. Le vecteur champ électrique est perpendiculaire à la direction de propagation; l'onde est transverse. La dépendance au temps fait apparaître une unique fréquence; elle est monochromatique.
- 2. $\vec{k} = k\vec{u}_x$.
- 3. $\vec{\nabla} \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = \frac{\partial (E_0 \exp[i(\omega t kx)])}{\partial z} = 0$. Nous sommes dans le vide donc $\rho = 0$.
- 4. On a, toujours dans le vide $\nabla^2 \vec{E} = \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) \vec{\nabla} \wedge (\vec{\nabla} \wedge \vec{E}) = -\vec{\nabla} \wedge \left(-\frac{\partial \vec{B}}{\partial t} \right)$, puis $\nabla^2 \vec{E} = \frac{\partial}{\partial t} (\vec{\nabla} \wedge \vec{B}) = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$. C'est l'équation d'onde. En introduisant l'expression du champ électrique dans cette équation, on obtient $k = \pm \frac{\omega}{c}$.
- 5. Cherchons un champ magnétique de la forme $\vec{B} = \vec{B}_0 \exp[i(\omega t kx)]$. L'équation de Maxwell-Faraday donne en simplifiant les exponentielles :

$$\vec{\nabla} \wedge \vec{E} = \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \qquad 0$$

$$\vec{\nabla} \wedge \vec{E} = \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = i k E_0 = -i \omega \vec{B}_0 \text{ Donc } \vec{B} = -\frac{E_0}{c} \exp[i(\omega t - kx)] \vec{u}_y.$$

$$\frac{\partial E_z}{\partial z} - \frac{\partial E_z}{\partial x} = 0$$

6. Attention, pour calculer la densité volumique d'énergie, il faut revenir en notation réelle. $u_{em} = \frac{\varepsilon_0 \vec{E}^2}{2} + \frac{\vec{B}^2}{2\mu_0} = \frac{E_0^2}{2} \left(\varepsilon_0 + \frac{1}{\mu_0 c^2} \right) \cos^2(\omega t - kx) = \varepsilon_0 E_0^2 \cos^2(\omega t - kx).$ Sa valeur moyenne temporelle vaut : $\langle u_{em} \rangle = \frac{\varepsilon_0 E_0^2}{2}$.

7. Toujours en notation réelle
$$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = -\frac{E_0^2}{\mu_0 c} \cos^2(\omega t - kx) \vec{u}_z \wedge \vec{u}_y$$
 puis $\vec{\Pi} = \varepsilon_0 c E_0^2 \cos^2(\omega t - kx) \vec{u}_x$. Sa moyenne temporelle : $\langle \vec{\Pi} \rangle = \frac{\varepsilon_0 c}{2} E_0^2 \vec{u}_x$.

8.
$$P = \langle \Pi \rangle S = \frac{1}{2} \varepsilon_0 c E_0^2 S$$
; donc $\langle \Pi \rangle = 2.5 \text{ kW/m}^2$; $E_0 = \sqrt{\frac{2}{\varepsilon_0 c} \frac{P}{S}} \approx 1000 \text{ V/m}$.

II. Onde électromagnétique dans un métal

On considère un métal parfait qui remplit tout le demi-espace z > 0. La densité volumique de charges ρ est nulle dans le métal. La densité volumique de courant \mathbf{j} est liée au champ électrique \mathbf{E} par la loi d'Ohm $\mathbf{j} = \sigma \mathbf{E}$, où σ est la conductivité.

1.
$$\operatorname{div} \mathbf{E} = 0$$
 et $\operatorname{div} \mathbf{B} = 0$. $\operatorname{rot} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ et $\operatorname{rot} \mathbf{B} = \mu_0 \sigma \mathbf{E} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$.

2

a)
$$\mathbf{k} \cdot \mathbf{E} = 0$$
 ; $\mathbf{k} \cdot \mathbf{B} = 0$; $\mathbf{k} \wedge \mathbf{E} = \omega \mathbf{B}$; $-i\mathbf{k} \wedge \mathbf{B} = \mu_0 (\sigma + i\varepsilon_0 \omega) \mathbf{E}$

b)
$$\mathbf{k} \cdot \mathbf{E} = 0$$
 ; $\mathbf{k} \cdot \mathbf{B} = 0$; $\mathbf{k} \wedge \mathbf{E} = \omega \mathbf{B}$; $-i\mathbf{k} \wedge \mathbf{B} = \mu_0 \sigma \mathbf{E}$

c)
$$\mu_0 \sigma \mathbf{E} = -i\mathbf{k} \wedge \mathbf{B} = -i\mathbf{k} \wedge \left(\frac{\mathbf{k} \wedge \mathbf{E}}{\omega}\right) = -\frac{i}{\omega} [(\mathbf{k} \cdot \mathbf{E})\mathbf{k} - (\mathbf{k} \cdot \mathbf{k})\mathbf{E}] = i\frac{k^2}{\omega} \mathbf{E}$$
; d'où $k^2 = e^{-i\frac{\pi}{2}} \mu_0 \sigma \omega$, puis $k = e^{-\frac{\pi}{4}} \sqrt{\mu_0 \sigma \omega} = \sqrt{\frac{\mu_0 \sigma \omega}{2}} (1 - i)$.

d)
$$\mathbf{E} = \text{Re} \left(E_0 \exp \left[i \left(\omega t - \frac{1 - i}{\delta} z \right) \right] \mathbf{u}_x \right) = E_0 \exp \left(-\frac{z}{\delta} \right) \cos \left(\omega t - \frac{z}{\delta} \right) \mathbf{u}_x$$

- 3. La présence du terme $\exp\left(-\frac{z}{\delta}\right)$ entraîne la décroissance du champ électrique sur une longueur caractéristique $\delta = \sqrt{\frac{2}{\mu_0 \sigma \omega}}$, appelée épaisseur de peau.
- 4. $\omega \mathbf{B} = \mathbf{k} \wedge \mathbf{E} = \frac{\sqrt{2}}{\delta} e^{-i\frac{\pi}{4}} E_0 \exp[i(\omega t kz)] \mathbf{u}_z \wedge \mathbf{u}_x$, puis en prenant la partie réelle : $\mathbf{B} = \frac{\sqrt{2}}{\omega \delta} E_0 \mathbf{u}_y \exp\left(-\frac{z}{\delta}\right) \cos\left(\omega t \frac{z}{\delta} \frac{\pi}{4}\right)$. Le champ électrique et le champ magnétique ne sont pas en phase.

5. Attention il faut passer en notation réelle :
$$\Pi = \frac{\mathbf{E} \wedge \mathbf{B}}{\mu_0} = \frac{\sqrt{2}}{\omega \mu_0 \delta} E_0^2 \exp\left(-\frac{2z}{\delta}\right) \cos\left(\omega t - \frac{z}{\delta}\right) \cos\left(\omega t - \frac{z}{\delta} - \frac{\pi}{4}\right) \mathbf{u}_z.$$

- a) La distance caractéristique d'amortissement du vecteur de Poynting vaut $\delta/2$.
- b) Le champ électrique génère des courants qui dissipent l'énergie sous forme de chaleur par effet Joule.