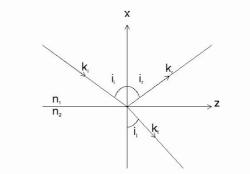
TD 4. Passage d'une Oem à une interface. Onde évanescente.

I. Formules de Fresnel

On considère une onde plane, monochromatique, rectilignement polarisée et de fréquence angulaire ω_i , incidente sur la surface S de séparation entre deux diélectrique d'indice n_1 et n_2 , de perméabilité magnétique μ_0 égale à celle du vide. La surface S est un plan repéré par les axes Oy et Oz. Le vecteur d'onde \mathbf{k}_i de l'onde incidente forme un angle i_i avec la normale au plan.



I.1. Lois de Descartes

- a) Ecrire le champ électromagnétique en un point quelconque M_1 du milieu d'indice n_1 .
- b) L'onde incidente donne lieu à une onde réfléchie de vecteur d'onde $\mathbf{k_r}$ qui se propage dans le milieu d'indice n_1 et à une onde transmise de vecteur d'onde $\mathbf{k_t}$ qui se propage dans le milieu d'indice n_2 . Ecrire le champ électromagnétique pour ces deux ondes.
- c) A la traversée de la surface les composantes tangentielles des vecteurs \mathbf{E} et \mathbf{B}/μ se conservent. Ecrire les deux équations qui en résultent.
- d) En déduire que les ondes réfléchie et transmise ont même fréquence que l'onde incidente. Retrouver les lois de Descartes.

I.2. Onde incidente polarisée perpendiculairement au plan d'incidence

Dans ce cas $\mathbf{E}_{i_{\perp}}$ est parallèle à l'axe Oy. On définit les coefficients de réflexion et de transmission par $r_{\perp} = \frac{E_{0r\perp}}{E_{0i\perp}}$ et $t_{\perp} = \frac{E_{0r\perp}}{E_{0i\perp}}$.

- a) A partir de l'équation de conservation du champ électromagnétique à l'interface, obtenir deux équations reliant r_{\perp} et t_{\perp}
- b) Résoudre le système pour obtenir les coefficients de réflexion et de transmission en fonction de n_1 et n_2 , i_1 et i_t .

I.3. Onde incidente polarisée parallèlement au plan d'incidence

Dans ce cas $\mathbf{E}_{i//}$ est contenu dans le plan Oxz

- a) A partir de l'équation de conservation du champ électromagnétique à l'interface, obtenir deux équations reliant r_{ll} et t_{ll}
- b) Résoudre le système pour obtenir les coefficients de réflexion et de transmission en fonction de n_1 et n_2 , i_1 et i_t .
- I.4. Analyse des formules de Fresnel (voir aussi en suivi)
- a) Dans le cas où $n_1 < n_2$, tracer les coefficients de réflexion et de transmission en fonction de l'angle d'incidence i_i pour les deux polarisations. Indiquer les angles d'incidences pour lesquels l'onde réfléchie subit un déphasage de π .
- b) Toujours dans le cas où $n_1 < n_2$, donner la valeur de l'angle d'incidence pour lequel un onde polarisée parallèlement au plan d'incidence n'est pas réfléchie. On parle d'incidence de Brewster.
- c) Recommencer a) et b) dans le cas où $n_1 > n_2$. Donner l'expression de l'angle d'incidence pour lequel la réflexion est totale.

II. Onde évanescente.

On reprend le problème précédent avec l'hypothèse supplémentaire que $n_1 > n_2$.

Supposons que l'angle d'incidence i_i soit supérieure à l'angle limite i_l tel que : $\sin i_l = n_2/n_l$

On postule qu'il existe néanmoins une onde « transmise » dans le milieu d'indice n_2 , de vecteur d'onde k_t , dont on se propose de déterminer les caractéristiques.

- 1. Ecrire la conservation des composantes tangentielles des vecteurs d'onde des ondes incidente, réfléchie et « transmise ».
- 2. En déduire que dans le milieu n1, k_r est symétrique de k_i par rapport à la normale à l'interface.
- 3. La norme de $\mathbf{k_t}$ étant égale à $n_2\omega/c$, montrer que sa composante selon \mathbf{Oz} est imaginaire.
- 4. Exprimer le champ complexe de l'onde « transmise » et montrer qu'elle est plane, progressive, se propageant parallèlement à l'interface, mais d'amplitude décroissant exponentiellement selon la direction **Oz**. Montrer que la profondeur de pénétration de l'onde (là où amplitude de l'onde est divisée par e) dans le milieu 2 est de l'ordre de grandeur de la longueur d'onde (incidente) dans le milieu 1.