De la métrologie en radioastronomie

Metrology in radioastronomy

Plan

Introduction The pulsar phenomenon Stellar evolution Interstellar Medium Scattering Dispersion **Pulsar Instrumentation** Baseband mixing Coherent dedispersion Observations Nançay Radiotelescope BON coherent dedispersor **Pulsars TOAs** Timing of pulsars Examples Conclusion

Plan

Introduction The pulsar phenomenon **Stellar evolution** Interstellar Medium Scattering Dispersion **Pulsar Instrumentation** Baseband mixing Coherent dedispersion Observations Nançay Radiotelescope BON coherent dedispersor **Pulsars TOAs** Timing of pulsars Examples Conclusion

CP 1919

August 1967 Cambridge, UK Jocelyn Bell

a pulsar is a highly magnetized neutron star

massive star

- \rightarrow supernovae
 - \rightarrow neutron star

a neutron star + a magnetic field → a pulsar

Pulsars in the Galaxy

1614 pulsars

http://www.atnf.csiro.au/research/pulsar/psrcat/

6 from ATNF catalog (dot: ordinary pulsars, dot+circle: binary pulsars)

Period distribution of pulsars

Periods of radio pulsars spans from 1.5ms to 8.5sec

Recycling...

Period - Period derivative diagram (or "Hertzsprung-Russell" diagram for pulsars)

Plan

Introduction The pulsar phenomenon Stellar evolution **Interstellar Medium** Scattering **Dispersion Pulsar Instrumentation** Baseband mixing Coherent dedispersion Observations Nançay Radiotelescope BON coherent dedispersor **Pulsars TOAs** Timing of pulsars Examples Conclusion

Scattering régimes

an assumption... the turbulent medium is a **thin phase changing screen**

Fresnel scale

 $\varphi(x, y)$ is the phase change introduced by the screen at transverse position (x,y)

the amplitude received at position (X,Y) on the observer plane is given by the **Fresnel-Kichhoff integral** (Born & Wolf, 1980)

$$\Psi(X,Y) = \frac{e^{-i\pi/2}}{2\pi r_F^2} \iint \exp\left[i\varphi(x,y) + i\frac{(x-X)^2 + (y-Y)^2}{2r_F^2}\right] dx \, dy$$

where r_F is the Fresnel scale, $r_F = \sqrt{\lambda D/2\pi}$

region inside r_F contributes coherently to the integral, while outside regions cancel because of rapid oscillations turbulent medium : random phase fluctuations $D_{\varphi}(x, y)$ described by the 'phase structure function'

 $D_{\varphi}(x, y) = \langle [\varphi(x'+x, y'+y) - \varphi(x', y')]^2 \rangle_{x', y'}$

i.e. the mean square phase difference between 2 points separated by (x,y)

if Kolmogorov turbulence,

isotropic and large outer scale and small inner scale

$$D_{\varphi}(r) = (r/r_{diff})^{5/3}, r^2 = x^2 + y^2$$

r_{diff} is the diffractive length scale

the transverse separation for which the r.m.s. phase difference is 1 rad

... the Fried length, r_o, in optical astronomy

Scattering régimes

$r_{diff} \gg r_F$ weak scattering

random phase fluctuations within the first Fresnel zone are small

$r_{diff} \ll r_F$ strong scattering

then $D_{\varphi}(r_F) \gg 1$, r_F is no longer relevant and r_{diff} is now the characteristic size of a coherent patch

For the observer in (X,Y), there will be many points (x,y) on the scattering screen with stationary phase...

that is multipath propagation

Scattering media in astronomy

	medium	wavelength	weak scattering	strong scatterring
optical	Earth's atmosphere	0.5μ	mostly	near horizon
radio	troposphere ionosphere solar wind interstellar medium	20cm 3m 1m 1m	yes yes mostly no	no sometimes close to the Sun yes

Narayan R., Phil. Trans. R. Soc. Lond. A (1992) 341, 151-165

Strong scattering

the spectrum of flux variations has two peaks at widely separated length scales

diffractive scintillation

a dominant peak corresponding to flux variations on lengthscales $\sim r_{diff}$ a large number of coherent patches scatters radiation into a diffraction cone of angle Θ scatt $\sim r_{ref}/D$, interfering together *random interference pattern* very strict limit on the angular size :

virtually only pulsars show diffractive scintillation

refractive scintillation

a second peak corresponding to weak flux variations on much longer lengthscales $\sim r_{ref}$ (can be seen in term of geometrical optics) *slow flux variations* modest limits on angular size : many compacts sources shown refractive scintillation

diffractive scintillation

Dynamic spectra on pulsar B0834+06 at Arecibo 2003 Dec 31

Dispersion induced by the ionized Interstellar Medium

The ISM is a **cold** and **ionised plasma** :

frequency-dependent index of refraction

$$\mu = \sqrt{\left(1 - \left(\frac{f_{P}}{f}\right)^{2}\right)} , \quad v_{g} = \mu c$$

where f is the observing radio and f_P the plasma frequency

$$f_P = \sqrt{\frac{e^2 n_e}{\pi m_e}}$$
 $f_P \sim 1.5 \text{kHz with } n_e \sim 0.03 \text{ cm}^3$

temporal delay with respect to infinite frequency :

$$t = \int_{0}^{d} \frac{dl}{v_g} - \frac{d}{c} \equiv D \frac{DM}{f^2} \quad , \quad D \equiv \frac{e^2}{2\pi m_e c} = 4148.808 \, Hz^2 \, pc^{-1} \, cm^3 s$$

Observation of pulsar PSR B1713+07 with NBPP showing dispersion and scintillation on Sep19,2002

Plan

Introduction The pulsar phenomenon Stellar evolution Interstellar Medium Scattering Dispersion **Pulsar Instrumentation Baseband mixing Coherent dedispersion** Observations Nançay Radiotelescope BON coherent dedispersor **Pulsars TOAs** Timing of pulsars Examples Conclusion

signal path in a radiotelescope

bandpass filter + mixer

IF amplifier to IF devices

mixer to baseband devices

low-pass filter to detection and integration pen-chart

baseband mixing

mixing can be done in several ways a single LO at one end of the passband $(f_0-\Delta f/2 \text{ or } f_0+\Delta f/2)$ real sampled data rate $2\Delta f$

a pair of LOs in phase-quadrature at the middle f_0 **complex sampled data** rate Δf twice

ISM Transfer Function

delay in the ISM can be represented as phase rotations depending on frequency and path length

$$\Delta \Psi = -k(f_o + f)d \quad , \quad k(f) = \frac{2\pi}{c}\mu f$$

where k is the wave number the transfer function is

$$H(f_{o}+f) = e^{-ik(f_{o}+f)d} \equiv e^{+i\frac{2\pi D}{(f+f_{o})f_{o}^{2}}DMf^{2}}$$

NUMERICAL COHERENT DE-DISPERSION

dedispersion

- a forward FFT
- multiplication by the inverse ISM transfer function
- a backward FFT
- folding coherently with varying pulsar period

dedispersion : overlap

n_{DM} is the number of samples over which the radio profile is dispersed Input voltage data n \rightarrow п_{DM} -Output voltage data

Two kind of pulsar instrumentation

incoherent dedispersion

done after detection on averaged intensity à la durée du cycle de l'onde reçue filterbank instrumentation

coherent dedispersion

done before detection

on voltages proportional to the received electric field, before any integration, signal phase is preserved complex sampled baseband instrumentatsion or swept LO

the swept LO : a special coherent instrumentation

mixing of sky signal with a swept LO emulating the effect of the ionized ISM analyzing the output with a standard spectrometer

PSR B1937+21 swept LO observation

For filterbank instrumentations,

together with scintillation, the residual dispersion within channels provide systematics on times of arrival...

Plan

Introduction The pulsar phenomenon Stellar evolution Interstellar Medium Scattering Dispersion **Pulsar Instrumentation** Baseband mixing Coherent dedispersion **Observations** Nançay Radiotelescope **BON coherent dedispersor Pulsars TOAs** Timing of pulsars Examples Conclusion

Nançay radiotelescope

8000m² collecting area (equiv to a 94m, 4th after Arecibo, Green Bank and Effelsberg)1.1 to 3.5GHztwo corrugated hornsGain ~ 1.5K/Jy, Tsys ~ 35Kcooled HEMT

Nançay radiotelescope

data path

full coverage from 1.1 to 3.5GHz

Nançay radiotelescope

data path

400MHz instantaneous bandwidth

NBPP 1998-2003 (Navy Berkeley Pulsar Processor)

Pulsaroscope 1988-... swept oscillator

Coherent dedispersor BON 2004-... (Berkeley-Orléans-Nançay)

BON : the coherent pulsar dedispersor at Nançay

Serendip V

2 polars I,Q sampled at 128Ms/s, 8bits PFB : 32 4MHz channels + CPV5350 Motorola embedded Linux

Figure 3 – SERENDIP V spectrometer module

A dedicated calculator for BON

1 master bi-processor Athlon
1.2GHz, 2Go memory
77 slaves bi-proc Athlon 1.2GHz,
1 Go memory, 10G hard disk
Gigabit network (32GBs)
switch Cisco 6009
operating system
Linux, kernel 2.4.2 "optimized"

C real-time code

a precise datation 1/3

Clock and Data sent by Serendip V to dataservers starts on the leading edge of a 1pps signal (pps = pulse per second)

1pps signal and 10MHz reference clock are provided by a GPS disciplined clock

Thunderbolt GPS disciplined clock, Trimble Inc.

a precise datation 2/3

Thunderbolt GPS Disciplined Clock GPS Clock for the Wireless Infrastructure

PERFORMANCE SPECIFICATIONS

General	L1 frequency, CA/code (SPS), 8-channel
	continuous tracking receiver
Update rate	1 Hz
PPS accuracy	UTC 20 nanoseconds (one sigma)
10 MHz accuracy	1.16 x 10 ⁻¹² (one day average)
10 MHz stability	See graph below

Specifications

a precise datation 3/3

time difference (in ns) between 1pps signal and the leading edge of SerendipV internal clock

A running observation...

		<u>a</u>			
Applications Places (Desktop 🔣 💿 🛛 💜 🔛	16 °C		📸 🔍 🔛 🔐 Thu May 31, 14:53	:24 🚺 🖬 🗐
	root@ds1:~			bon@ds1:~	
<u>F</u> ile <u>E</u> dit <u>∨</u> iew <u>T</u> ermina	al Ta <u>b</u> s <u>H</u> elp		<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> erminal Ta <u>b</u> s <u>H</u> elp		
top - 14:53:26 up 342 Tasks: 58 total, 3 Cpu0 : 16.8% user, Cpu1 : 11.8% user, Cpu2 : 1.6% user, Cpu3 : 19.7% user, Mem: 1030972k total, Swap: 1959888k total,	days, 23:19, 2 users, load average: 1.13, 1.16, 1.01 running, 55 sleeping, 0 stopped, 0 zombie 41.1% system, 0.0% nice, 42.1% idle 0.3% system, 0.0% nice, 87.8% idle 37.5% system, 0.0% nice, 60.5% idle 21.1% system, 0.0% nice, 59.2% idle 1013992k used, 16980k free, 201828k buffers 148k used, 1959740k free, 439404k cached		Net shared memory status MaxStatus: 3 Status: 1 Rate Ol Ol O	e:123.58 MB/s 01 01 00 00 00 00 00 00 00 00 01 01 01 0	II
PID USER PR NI 27588 root 18 6 27586 root 14 6 3 root 19 15 520 hon 9 6	VIRT RES SHR S %CPU %MEM TIME+ COMMAND 113m 113m 113m R 65.1 11.3 22:12.70 asp_net_ds 232m 232m 232m R 59.8 23.1 16:45.38 asp_channelize 0 0 0 0 5 6.0 0.0 18454:36 ksoftirqd_CPU0 0 1356 1356 1108 S 2.7 0.1 0:01 44 stat net		ew Teluluar 1973 Tielh	dataserver 128MB/s	
1831 root 13 (908 908 724 R 1.3 0.1 0:00.31 top		cognard@psr	001.cluster: /home/cognard	_ _ X
390 bon 9_0	1824 1764 1596 S 0.7 0.2 0:01.12 sshd	Eil	e <u>E</u> dit <u>V</u> iew <u>T</u> erminal Ta <u>b</u> s <u>H</u> elp		
27584 root 9 1 root 9 2 root 9 t 4 root 19 19 5 root 19 19 Eile Edit ⊻iew Termina	DataServer CPU O2 %0 dt 0 0 0 \$ 0.0 0:00.01 Keventd 0 0 0 \$ 0.0 0:00.18 ksoftirqd_CPU1 0 0 0 \$ 0.0 0:00.29 ksoftirqd_CPU2 cognard@psr001.cluster: /home/cognard al Tabs Help		Met shared memory status 1 laxStatus: 1 status: 0 00 00 00 00 00 00 00 00 00 00 00 00 00	.89 MB/s 00 00 00 00 00 00 00 00 00 00 00 00 00	Ξ
12:53pm up 342 days, 30 processes: 27 sleep CPU0 states: 87.0% use CPU1 states: 90.0% use Mem: 1029940K av, 10: Swap: 2097136K av,	, 21:47, 2 users, load average: 0.88, 1.01, 0.90 ping, 3 running, 0 zombie, 0 stopped er, 12.1% system, 0.0% nice, 0.0% idle er, 9.2% system, 0.0% nice, 0.0% idle 24892K used, 5048K free, 0K shrd, 3284K buff 2008K used, 2095128K free 945228K cache	ad b	DD: 54251.511738	slaves 8MB/s	
PID USER PRI NI 9770 root 18 0 9775 root 9 0 9775 root 9 0 9772 root 11 0 9851 cognard 11 0 1 root 9 0 2 root 9 0 3 root 19 12 4 root 19 12 5 root 19 12 7 root 10 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2007_05_31 1 2007_05_31 1 2007_05_31 1 2007_05_31 1	2:16:08 - From asp_result_slave on psr013.cl 2:16:08 - From asp_result_slave on psr016.cl 2:16:08 - From asp_result_slave on psr018.cl 2:16:08 - From asp_result_slave on psr038.cl 2:16:08 - From asp_result_slave on psr024.cl 2:16:08 - From asp_result_slave on psr031.cl 2:16:08 - From asp_result_slave on psr031.cl 2:16:08 - From asp_result_slave on psr034.cl	ier: Ready for data ier: Ready for data luster: Ready for data	
346 root 9 351 root 9 365 rpc 9 420 root 9 421 root 9 436 root 9 436 root 9 448 root 9 460 root 8 495 root 9 504 root 9	0 600 580 540 S 0.0 0.0 1:29 syslogd 0 1116 504 504 S 0.0 0.0 0:00 klogd 0 596 508 508 S 0.0 0.0 0:00 portmap 0 0 0 0 SW 0.0 0.0 0:202 rpciod 0 0 0 SW 0.0 0.0 0:202 lockd 0 2272 1544 1544 S 0.0 0.1 0:00 snmpd 0 956 764 764 S 0.0 0:00 xinetd 0 636 592 S 0.0 0.0 0:111:51 ntpd 0 1020 932 860 S 0.0 0:17 sshd	2007_05_31 1 2007_05_31 1	2:16:09 - From asp_result_master on psrsc.cl 2:16:17 - From asp_net_slave on psr014.clust 2:16:17 - From asp_net_ds on ds2.ds: Ready 2:16:52 - From asp_edt on ??: Recived start 2:16:53 - From asp_edt on ??: Recived start 2:16:53 - From asp_edt on ??: Start MJD = 5 2:16:53 - From asp_result_master on psrsc.cluster 2:18:04 - From asp_result_file on psrsc.cluster 0:00@ds1:~	Luster: Ready for data ter: Connected to ds ter: Ready for data for data t signal t signal 54251.511736 54251.511736 luster: Recieved results (count=1) ster: Wrote data to disk.	v ako Seree

Plan

Introduction The pulsar phenomenon Stellar evolution Interstellar Medium Scattering Dispersion **Pulsar Instrumentation** Baseband mixing Coherent dedispersion Observations Nançay Radiotelescope BON coherent dedispersor **Pulsars TOAs Timing of pulsars Examples** Conclusion

Timing of pulsars

determine the arrival times of radio pulses received on Earth

this needs

- a precise reference clock
- a special instrumentation

to integrate the signal in time and frequency

analyze the shape of the time of arrival residuals

Times of Arrival for J1600-3053

Ē	1	1600-30	1368.000	54033.5511921591647	0.48
Ē	1	1600-30	1368.000	54036.5385764225914	0.54
Ē	1	1600-30	1368.000	54048.5021991052575	0.59
Ē	1	1600-30	1368.000	54051.5056597667359	0.50
Ē	1	1600-30	1368.000	54054.4968287444377	0.46
Ē	1	1600-30	1368.000	54056.4913888998682	0.48
Ē	1	1600-30	1368.000	54057.4889815273292	0.52
E	1	1600-30	1368.000	54060.4810301095328	0.51
Ē	1	1600-30	1368.000	54065.4600579101507	0.60
Ē	1	1600-30	1368.000	54071.4479745723167	0.57
Ē	1	1600-30	1368.000	54072.4445486474761	0.53
Ē	1	1600-30	1368.000	54079.4312384526258	0.50

observatory_code, '1', pulsar_name, radio_frequency[MHz], TOA[MJD], uncertainty[µs]

Analysis of Times of Arrival

minimize the differences MEASURED TOAs – CALCULATED TOAs

this can be done with different codes :tempo (Princeton, then Parkes)antiope (Meudon, then Orléans)

- timapr (O.Doroshenko)

tempo

input files : parameters + TOAs

600.par :	PSRJ	J1600-3053	
•	RAJ	16:00:51.90392	0
	DECJ	-30:53:49.325	0
	DM	52.333	
	PEPOCH	52500.0	
	FO	277.937711457601	1
	F1	-7.322E-16	1
	PMRA	-0.91	
	PMDEC	-4.0	
	POSEPOCH	52500.00	
	EPHEM	DE405	
	BINARY	DD	
	PB	14.348457554	1
	Ε	0.00017371	1
	Al	8.8016571	1
	Т0	52506.3711244	1
	OM	181.768043	1

tempo

output file is tempo.lis

PSR J1600-3053 1	Ephem: DE	405 Clk:	UNCORR	P	Ref:	52500.	.0000	Pos	Ref:	52500.	00
RA		DEC	PI	MRA	PM	DEC	PM	RV	PARAI	LAX	
16 00 51.903920	02 -30 53	49.3250	000 -0	.9100	-4.	0000	0.0	000	0.0	0000	
0.00000	00	0.0000	000 0	.0000	0.	0000	0.0	000	0.0	0000	
0.00000	00	0.0000	000 0	.0000	0.	0000	0.0	000	0.0	0000	
16 00 51.903920	02 -30 53	49.3250	000 -0	.9100	-4.	0000	0.0	000	0.0	0000	
FO		F1	(D-15)	F	'2(D-2	3)	F3(D	-00)			
277.9377114576	0098307	-0.7322		0.0		000	0.00	0000			
0.000001696	1066173	-2.4427	71193969	1.7	51614	040	0.00	0000			
0 000000126	6097278	0 1806	63222978	0 1	28783	973	0 00	0000			
277 9377116272	1162682	-3 1749	71193969	0.± 1 7	51614	040	0 00	0000			
211.0011110212.	1102002	5.1715	11190909	±•/	01011	010	0.00	0000			
PO		P1	(D-15)		DM		DM1		PPN	GAM	
0.003597928452	2264215	0.0000	09478394	52.	33300	0 (0.000	00	1.00	00000	
-0.00000000002	1956252	0.0000	31621891	0.	00000	0 (0.000	00	0.00	00000	
0.00000000000	1638974	0.0000	02338702	0.	00000	0 (0.0000	00	0.00	00000	
0.003597928450	0307963	0.0000	41100285	52.	33300	0 (0.000	00	1.00	00000	
Al sin(i)	E		TO(MJD)			PB		С	MEGA		
8.801657100	0.000173	7100 525	06.37112	4400	14.3	484575	554000	181	.76804	13	
-0.00000265	0.00000	0798	-0.00088	3024	-0.0	000000)22373	-0	.02220)6	
0.00000178	0.00000	0448	0.00057	6593	0.0	000000)10718	0	.01447	72	
8.801656835	0.000173	7898 525	06.37024	1376	14.3	484575	531627	181	.74583	37	
Mass function:	0.003556	0316 +/-	0.0000	00002	2 sola	r mass	ses				

Weighted RMS residual: pre-fit 11.887 us. Predicted post-fit 0.835 us.

Date (MJD)

pre-fit

with a 10-4 relative offset on A1.sin(i)

PSR J0613-0200

P=3.062ms P_{Bin}=1.2days

Comparison between integrated daily profiles for observational parameters refined parameters

PSR 0613-01 Mar 29, 2007 17:07:12UT

P=0.0030622626# CM=38.799pc.om

Limiting factors

Multipath produces varying scattering tails, tiny changes in the shape of daily profiles yield to systematics in TOAs How much is the mean pulse affected by low level contribution of delayed pulses ? Should we routinely produce a secondary spectrum to be able to correct TOAs ? squared modulus of

dynamic spectra

secondary spectra

the Fourier transform of

Conclusion

a stable local clock a baseband dedispersor a large telescope

> and high quality timing measurements of millisecond pulsars are achieved... and metrology in radioastronomy becomes a reality !