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Interaction of rays with matter described by various lengths `
→ mean free path for something to happen (coll, abs)
probability of nothing to happen up to x:

dp

p
= −

dx

`

■ 1/` = particle density × cross section = n × σ

■ n → n(x), useful to use depth of material X such that
dX = ρ(x)dx

dp

p
= −

dX

λ

with λ in units of X, in practice g/cm2
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■ Earth’s atmosphere = cosmic-ray shield

■ High energy protons have interaction length in air
λpA = 85 g/cm2

■ Note: A for air (or 80% N+ 20% O)

■ For a downward vertical path to sea level
∫

dX ≈ 1000 g/cm2
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p(Ep = 1017 eV) + A → X

sNN = 2mNc2Ep = O
(

(10 TeV)2
)

, i.e. LHC

■ Tevatron → (2 TeV)2 and RHIC → (200 GeV)2

→ need to extrapolate

→ hadronic models (more in Stanev sec 8.3)
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p + A → X

■ X

— ∼ 10 2 pions (20% something else) + target fragments
+ “original” baryon with a fraction of the initial energy

— pions are π +, π− and π0

■ π0 99%
→ 2γ

— cτ π0 = 25 nm; π0’s desintegrate before reinteracting

■ γ’s initiate the electromagnetic component of the shower

1. pair creation γ + A → e+e− + X

2. bremsstrahlung e + A → e + γ + X

3. repeat 1 and 2
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■ multiplicative process

■ energy distributed among a vast number of secondary
particles

■ almost forward development

time picture
shower
history
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which N?

■ electrons and positrons

■ charges

■ charges above an en-
ergy threshold (in prac-
tice that of particle de-
tection)

X
X

N

max

max

N

N(X) trend results from competition

■ multiplicative processes ⇒ dN > 0 and E ↘

■ ionisation loss ⇒ E ↘
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Toy model for cascade development

■ 1 → 2 process, with daughter particles each carrying half
the parent energy

■ Branching at every step of length X1/2

■ After the kth branching X = k × X1/2, N = 2k and the
energy per particle is Ep/N

■ Assume branching process stops when E ≤ EC

Nmax =
Ep

EC
, Xmax = X1/2 log2(Ep/EC)



γ initiated shower

Air showers

Time development

N(X)

Heitler model

γ shower

Greisen

Nmax

energy spectrum

hadron content

in practice

nucleus shower

charge excess

Shower extension

A first exercise

6= approaches

13 / 37

■ γ + A → e+e− + X and e + A → e + γ + X are 1 → 2
processes

■ ≈ same length scale ‘radiation length’= X0 ≈ 40 g/cm2

■ X1/2 ≈ ln 2 × X0 = 30 g/cm2

■ these branchings dominate for E > EC , with a critical
energy in air ≈ 100 MeV

Nmax =
Eγ

100 MeV
, Xmax = 100 g/cm2 × log10(Eγ/100 MeV)

model misses energy loss by ionisation ⇒ Nmax overestimated
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(Stanev p. 175)

Nγ
e =

0.31
√

lnEγ/EC

exp [(1 −
3

2
ln s)X/X0], s =

3X

X + 2Xmax

N

X/X0

1e6 GeV

 0
 5  10  15  20  25  30 0

 1e+06
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■ Energy dissipated in ionisation loss; for relativistic particle
the rate is dE/dX ≈ −2 MeV/g/cm2

■ N(X) number of charged particles at depth X

■ Energy dumped in [X,X + dX] slice

dE = (2 MeV/g/cm2) × N(X)dX

⇒
∫

N(X)dX ≈
Ep

2 GeV
× 1000 g/cm2

(→ fluorescence method, more in Nagano-Watson)
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∫

N(X)dX = Nmax×characteristic shower length

taking 1 atmospheric thickness:

Nmax =
Ep

2 GeV
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in Heitler model:

■ total track length associated with particles of energy
greater than E = Eγ/2k

= 30 g/cm2 × 2k(1/2 + 1/4 + · · ·) ≈ (Eγ/E) × 30 g/cm2

■ an electron with E = EC loses it in one radiation length

■ total track length associated with particles of energy lower
than EC = (Eγ/EC) × 40 g/cm2

■ more weight to low energy in actual fact
∫

>E
NdX ≈ 40 g/cm2 ×

Eγ

EC
×

30 MeV

E + 30 MeV

this is for the whole shower → at and around maximum
N(> E)/N
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■ π±: cτ = 8 m

— λ πA = 120 g/cm2 → `πA ≈1 km for
n(z = 0) = 1 mg/cm3

— at high energy pions reinteract

— otherwise they decay → µν; muons (only lose
2 MeV/g/cm2) → direct information on pions

■ π0: estimate of Xmax and Nmax for proton induced shower
assuming that the e.m. showers are initiated by 1st
generation π0’s

Xmax = λpA + X0 ln

[

(1 − K)Ep

2〈m〉EC

]

, Nmax =
(1 − K)Ep

3EC
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average behavior (adjusted with Monte-Carlo)

Gaisser-Hillas formula (Stanev p. 186)

N(X) = Nmax

(

X − X1

Xmax − λ

)Xmax/λ−1

exp−

(

X − X1

λ

)

+ fluctuations:

■ on X1 → Xmax

■ on shape and Nmax: individual realizations of first hadronic
collisions (inelasticity, multiplicity, energy of secondaries)
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■ in the superposition approximation: nucleus = A×
independent nucleons with energy Ep/A

■ nucleus shower = A×nucleon showers

■ shift of Xmax: Xmax(Ep, A) = Xmax(Ep/A, p)

■ less shower to shower fluctuation
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■ below EC

e(γ) + A → e(γ) + e− + X

delta rays (Compton recoil)

■ positron annihilate in flight

→ 10–20% e− excess in the energy range below EC
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■ Emission → spread of hadrons

■ Multiple scattering → spread of electrons

spread of hadrons limited to a few meters

electrons

■ typical scattering angle θ ∼ 1/γ

■ θ2(n) = n × (1/γ)2

■ proportion of scatterings with radiation ∼ 1/α

⇒ dθ2 = (Es/E)2dX/X0, with Es = 4π mec
2/α = 21 MeV
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including energy loss Xi → Xf , E(X) = E(Xf ) × e
Xf−X

X0

X ′ = Xf − X,

θ2(i → f) =

∫

dθ2 =
E2

s

E2
f

∫ Xi−Xf

0

e−2X′/X0
dX ′

X0

, (Ef > EC)

and lateral displacement

D2(i → f) =

∫

X ′2dθ2 ⇒ D =
10 MeV

E
X0 (E > EC)

i.e., 40 m at 100 MeV at sea level
→ multiple scattering longitudinal lag 3 m, also ↘ with ↗
energy
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flux of electrons given by NKG formula (Gaisser p 226, Stanev
p 179)

ne(r,X) = Ne(X)
C

r r1

(

r

r1

)s−1 (

1 +
r

r1

)s−9/2

,

with

r1 =
Es

EC

X0

ρair
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From showers to electric fields
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consider Cerenkov radiation of a charge particle (q = Z e)
energy spectrum per unit length

d2EC

dLdω
= αZ2 sin2 θC

ω

h̄c

■ Cerenkov in air θC � 1

■ vertical downward moving particle

■ trajectory bit of length ∆z around z0 shines on a ring of
mean radius z0 θC and width ∆z θC

∆EC

2πz0∆zθ2
C

= αZ2 ω∆ω

hcz0
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⇒ dEC/dS ∼ 102 MeV/m2 using hc = 1.24 eV µm, Z = 1,
z0 = 4 km, Ne = 5107, λ = 0.6 µm and ∆λ = 0.4 µm

radio (decametric)

■ divide ω by ∼ 107 and ∆ω by ∼ 107

■ take Ae ∼ 10 m2

⇒ ∆EC = 10−5 eV

■ much too small since galactic noise gives

kBT × ∆ν × ∆t → 2.5 eV × 40 MHz × 10 ns = 1 eV
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solution: replace Ne → N2
e ; incoherent → coherent

■ at first: N− = N+ ⇒ no field at all

■ but systematic charge separation by

1. earth magnetic field (and E field in thunderstorms)

2. elementary processes below EC → negative charge
excess



Various approaches

Air showers

Time development

Shower extension

A first exercise

6= approaches

Overview

Σ~E

~E[ρ,~]

Time scales

Large b

31 / 37



Overview

Air showers

Time development

Shower extension

A first exercise

6= approaches

Overview

Σ~E

~E[ρ,~]

Time scales

Large b

32 / 37

■
∑N

k=1
~E(t, A) with ~E single-charge electric field taken from

textbook → Monte-Carlo based approach

■ ~E[ρ,~]

■ Feynman formula for relativistic charges:

~E =
−q

4πε0c2
~e′′r′
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More thorough study to date: T Huege, H Falcke, Astronomy &
Astrophysics 412, 19 (2003); Astronomy & Astrophysics 430,
779 (2005); Astropart. Phys. 24, 116 (2005); T Huege et al,
Astropart. Phys. 27, 392 (2007)
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q~v ∧ ~B
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shower electromagnetic field as a standard electromagnetism
exercise

( ~E, ~B) = F [ρ,~]

how to carry out such a program ?

■ Kahn and Lerche approach

— ringlike geometry

— no shower evolution (contribution around N max) +
estimate for shower decay

— formulation in Fourier space

— geomagnetic contribution > Askaryan effect (charge
excess)

■ more realistic model, numerical implementation. . . not (yet)
followed
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θ

(~10 km)1

r

B

l
3

(~3 km)

(~1 km)b

A

2

■ particle Q moves at ≈ c

■ Q =B at t = 0

■ cti =
√

d2
iB + b2 − diB

■ ∆t12 ≈ 0.4 b2 (small θ)

■ ∆t2B = 3.3 b

(time in µs and distance
in km)

■ Doppler distorsion: fast rise and slow decay

■ v ≈ c valid at θ � |c − v|

■ ∆t32 ≈ l/c + b r/(cd2B), both terms < 30 ns



Time scales

Air showers

Time development

Shower extension

A first exercise

6= approaches

Overview

Σ~E

~E[ρ,~]

Time scales

Large b

35 / 37

θ

(~10 km)1

r

B

l
3

(~3 km)

(~1 km)b

A

2

■ particle Q moves at ≈ c

■ Q =B at t = 0

■ cti =
√

d2
iB + b2 − diB

■ ∆t12 ≈ 0.4 b2 (small θ)

■ ∆t2B = 3.3 b

(time in µs and distance
in km)

■ Doppler distorsion: fast rise and slow decay

■ v ≈ c valid at θ � |c − v|

■ ∆t32 ≈ l/c + b r/(cd2B), both terms < 30 ns



Time scales

Air showers

Time development

Shower extension

A first exercise

6= approaches

Overview

Σ~E

~E[ρ,~]

Time scales

Large b

35 / 37

θ

(~10 km)1

r

B

l
3

(~3 km)

(~1 km)b

A

2

■ particle Q moves at ≈ c

■ Q =B at t = 0

■ cti =
√

d2
iB + b2 − diB

■ ∆t12 ≈ 0.4 b2 (small θ)

■ ∆t2B = 3.3 b

(time in µs and distance
in km)

■ Doppler distorsion: fast rise and slow decay

■ v ≈ c valid at θ � |c − v|

■ ∆t32 ≈ l/c + b r/(cd2B), both terms < 30 ns



Large impact parameters

Air showers

Time development

Shower extension

A first exercise

6= approaches

Overview

Σ~E

~E[ρ,~]

Time scales

Large b

36 / 37

⇒ at large b → (distorted) image of N(X)

■ pointlike approximation: all timescales but obliquity set to 0

t

emission time:

A

b
B

Z

Q

t’

reception time:

C

~~v c

origin of time
when Q=B

−c t′ � b2/2 � c t

ct ct′ ≈ −b2/2,

E(t, A) =
eNee(t

′) aT

4πεc2

b2

2 (ct)3

aT =
e cB sinα

γme
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(vertical, 1019 eV, 700 m)
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makes it possible

■ problem inversion

■ discussion of antenna spacing for a giant array
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