LOFAR and the Medicina Northern Cross

IRA-INAF

Gianfranco Brunetti Ettore Carretti Luigina Feretti Karl-Heinz Mack Jader Monari Stelio Montebugnoli Federico Perini Tiziana Venturi

University Bologna

Daniele Dallacasa Roberto Fanti Gabriele Giovannini Annarita Margiotta Lauro Moscardini Giovanni Naldi Maurizio Spurio

The IRA/INAF Observatory at Medicina

The Northern Cross radio Telescope

E/W arm Single antenna 560 m x 35 m (1536 dipoles)

N/S arm Array of 64 antennas 640 m x 23.5 m (4096 dipoles)

Collecting area: 30000 m²

Working bandwidth: 2.7 MHz @ 408 MHz

The Medicina LOFAR SuperStation

Idea:

 Enable the East/West arm of the Northern Cross telescope to work in LOFAR frequency range (upper band: 120 – 240 MHz).

Objective:

 To create a LOFAR station with 2000 m² effective area.

The Medicina LOFAR SuperStation

- Design study to upgrade 6 lines (23.5 m each) to the LOFAR upper band
- Simulations and tests in progress in order to obtain the optimum sensor (fat dipoles, branched Vivaldi)
- Electronic devices to be installed on the focal lines (LNAs...) ready
- The LOFAR backend might be used

The Medicina LOFAR SuperStation Receiving System Scheme

- Up to 220 receiving systems will have to be linked via analogue optical fiber links (700 m long) to the Back Ends
- The requirements are the same of SKA: possibility of sharing the links between the 2 projects

Long Baseline Interferometry Test

Main features (first light):

- 18 log-periodic 0 antennas installed in one section of the E/W arm (~24 m length)
- ~ 400 m² of 0 estimated
- effective area
 BEE2 (up to 32 receivers) used for data acquisition

Project Status for first light

- Sensors: in production (prototype already designed and tested)
- LNA: ready to be used
- Data acquisition tool: under test
- A/D: ready to be used

Ready in summer 2008!

Sensor Design (first light)

- Custom Log-periodic
 Antenna
- Ad hoc for LOFAR
 120+240 MHz band
- Designed by:

Sensor Design (first light)

- First prototypes completed...
- ... and already tested with good results

Performance E/W array: Summary

Frequency (MHz)	Antenna Width Efficiency η (%)	HPBW (Deg.)	Secondary Lobes (dB)	Spillover Lobes (dB)
120	75	4.5×6	-13.5	-14
240	65	2.2 × 3	-13.5	-15.5

System of calibration: towards the superstation

Main specs of the test station

	120 MHz	240 MHz
FOV	$4.5^{\circ} \times 60^{\circ}$	$2.2^{\circ} \times 30^{\circ}$
Resolution	7.4' × 32'	3.7' × 16'
Sensitivity	≈ 100 Jy	$\approx 100 \text{ Jy}$

Search for Supernova Remnants

• ≈ 270 SNRs are known

- Up to 3000 Galactic SNRs predicted
- Typical angular dimension: 10' 2°
- Non-thermal spectra => search at low frequencies
- Low-frequency spectra => probe shock acceleration

foreground free-free absorption

Long Baseline Interferometry Test

- ~ 1000 km baseline
- Medicina station already connected to EVN (European VLBI Network) through optical fiber link (Géant)

on, England		30 MHz	75 MHz	120 MHz	240 MHz	بر ب ^ل ان
	150 km	17″	6.7"	4.2"	2.4"	Zag
• <u>Onl</u>	500 km	5"	2"	1.2"	0.6"	Otok Crés Otoki Otoki
sim	1000 km	2.4"	1″	0.6"	0.3"	
(November 2005)			Isolate	Elba	~	

Hot spots in radio galaxies: physics of longbaseline calibrators

Sub-arcsec resolution! 500 -1500 km baseline

Slide - 16

Radio Halos in Clusters of Galaxies

Diffuse synchrotron radio cluster sources:

- Low surface brightness (µJy arcsec⁻² at 1.4 GHz)
- Not associated with any individual galaxy
- Permeate the cluster volume, similarly to the hot X-ray gas (~Mpc size)

Promising possibility: Merger induced particle acceleration (Turbulent acceleration):

Reacceleration Model (Brunetti et al. 2001, Petrosian et al. 2001)

Feretti et al. 2001

Expectations at 150 MHz

(Cassano et al. 2006; Cassano et al. in prep.)

low-mass _____ z=0-0.1 cut-off _____ z=0.4-0.5

Number density of GRHs increases from 1.4 GHz to 150 MHz!

LOFAR can detect diffuse emission on Mpc scales at 150 MHz down to few mJy. Sufficient to catch the bulk of GRHs

But confusing point sources must be subtracted => arcsecond resolution

Giant Radio Galaxies: Tracing the Density of the Intergalactic Medium (IGM)

- Radio galaxies > 1 Mpc
- Relatively old (~10⁸y) AND embedded in very tenuous IGM
- Low surface brightness, in particular at high frequencies
- Mostly known at low z
- Search at higher z to probe cosmological evolution of IGM density

Slide - 19

LOFAR in INAF

May-June 2008 LOFAR Medicina Super Station Workshop

- Italian White Paper coming out soon.
- participation in LOFAR highly ranked both in mid-term and long-term plan
- INAF priority to purchase a standard LOFAR station
- University of Bologna has invested in Northern Cross

Synergy