Galaxy clusters for Dark Matter indirect detection: stacking vs. single-source

C. Combet, LPSC

D. Maurin (LPSC) E. Nezri (LAM) E. Pointecouteau (IRAP) J. Hinton & R. White (UoL, UK)

Charbonnier, Combet, Maurin, CPC 183, 656, arXiv:1201.4728 Combet et al., PRD 85, 063517, arXiv:1203:1164 Nezri et al., arXiv:1203.1165 Maurin et al., arXiv:1203:1166

Gamma-ray flux from DM annihilation

The γ -ray flux is given by

m

$$\frac{d\Phi}{dE}(E,\phi,\theta,\Delta\Omega) = \frac{d\Phi^{\rm pp}}{dE}(E) \times \Phi^{\rm astro}(\phi,\theta,\Delta\Omega)$$

$$\frac{P_{\rm article}}{P_{\rm maxive Particles}} \xrightarrow{\rm Particle}{\rm Physics} \xrightarrow{\rm Astrophysics} \xrightarrow{\rm$$

 \rightarrow Need Φ^{astro} to put any constraints on DM candidate

Gamma-ray flux from DM decay

The γ -ray flux is given by

Where to look ? 1. Galactic scale

Aquarius – Springel et al (2008) – MW-like halo - Λ CDM

2. And further: galaxy clusters

Galaxy clusters have a huge DM content $(10^{14} - 10^{15} \text{Msun})$ \rightarrow interesting for indirect detection

But CR-induced emission could be a strong contaminant

Spectrum, signal spatial distribution and associated multi- λ emissions could help distinguish CR from DM (e.g. *Jeltema, Kehayias & Profumo 2009, Maurin et al. 2012*)

DM searches in galaxy clusters

• So far, non-detections only:

• Modeling:

→ Theory, sims.: Jeltema et al. (2009), Pzinke et al. (2011), Cuesta et al. (2011), Sanchez-Conde et al. (2011)

• X-ray catalogue: best up until recently, HIFLUGCS ~ 100 objects

Best targets: Coma, Fornax, AWM7, Virgo... No detection \rightarrow Constraints on cross-section (annihil.) or lifetime (decay)

Since 2011, MCXC meta-catalogue: ~ 1700 objects \rightarrow "statistics" become possible

MCXC: Píffarettí et al. (2011)

Catalogue	No. of clusters	No. of clusters
Sub-catalogues	Input	MCXC
NORAS/REFLEX	889	878
NORAS	445	437
REFLEX	444	441
400SD	266	257
400SD SER	242	237
400SD_NONSER	24	20
160SD	199	90
BCS	312	80
BCS	205	47
eBCS	107	33
SGP	157	55
SHARC	69	29
SHARC_BRIGHT	37	14
SHARC_SOUTH	32	15
WARPS	159	78
WARPS	34	11
WARPSII	125	67
NEP	63	48
MACS	51	39
MACS_MJFV	23	18
MACS_BRIGHT	22	15
MACS_DIST	6	6
CIZA	130	128
CIZAI	73	72
CIZAII	57	56
EMSS	102	61
EMSS_1994	81	47
EMSS_2004	21	14
TOTAL	2397	1743

Meta-catalogue of 1743 X-ray detected clusters

- Most data from ROSAT All Sky Survey
- Extraction and homogenisation
- Provides R500 and M500 for all objects

For the first time, number of objects is high enough to start studying the statistics

Modeling annihilation/decay -
$$\Phi^{astro}$$

- Cluster DM profile poorly constrained
- Assume NFW profile for all MCXC clusters $\rho(r) = rac{
 ho_s}{(r/r_s)(1+r/r_s)^2}$
 - Calculate normalisation and scale radius from R500 and M500
- Compute J or D for all MCXC clusters

 \bullet

Modeling annihilation/decay astro

- Cluster DM profile poorly constrained
- Assume NFW profile for all MCXC clusters

$$\rho(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

- Calculate normalisation and scale radius from R500 and M500
- Compute J or D for all MCXC clusters

Can stacking help?

Annihilation: sub-structures

- N-body sims \rightarrow spatial distribution of substructures dP/dV, mass distrib. dP/dM
- Boost from substructures: $\int \rho^2 \neq (\int \rho)^2$ (no boost for decay)
- Boost depends on integration angle, mass range for the clumps, dP/dV, dP/dM
 - \rightarrow large uncertainties
 - \rightarrow Working with conservative parameters

Stacking potentially useful?

Annihilation:

- If no clumps \rightarrow stacking is pointless
- With substructures \rightarrow stacking could be interesting as

 $N \propto J^{-2}$

Decay: $N\!\propto\!D^{-2.3}$

Stacking looks promising

But need consider instrumental response Answer depends on type of detector

Fermi and CTA

Fermi

- Space-borne
- Energy range: 30 MeV 300 GeV

Gamma ray

Particle

showe

- 10 km

- Resolution: $1^{\circ} 0.1^{\circ}$
- Fullsky

CTA – Cherenkov Telescope Array

- Ground based
- Energy range: 100 GeV \rightarrow 100 TeV
- Resolution: 0.2° 0.02°

Stacking if annihilation

 \rightarrow Stack sources according to S/N consideration (PSF, integration angle)

Stacking if annihilation

 \rightarrow Stack sources according to S/N consideration (PSF, integration angle)

- Galaxy clusters are interesting DM indirect detection targets Alternative to dSph (see Charbonnier et al., 2011)
- Individual DM profiles are poorly-constrained
 → Stacking is a way to wash out uncertainties
- Annihilation: Log J log N, stacking looks promising but
 - \rightarrow For pointed observations (CTA), single-object observation is a better strategy
 - \rightarrow It is marginally beneficial for all-sky observatories (e.g. Fermi), x 1.7
- Decay: initial study shows that stacking should yield a factor \geq 5 improvement
- Stacking also investigated as discriminant between DM and cosmic ray-induced gamma-ray emission