Application of wide field X-ray cluster surveys to cosmology

illustrated by XMM-LSS, XXL, X-CLASS

M. Pierre CEA Saclay

The two basic cluster quantities used in cosmology

- Cluster number counts
 - dn/dnz
 - dn/dM/dz

→Calculating cluster masses is the BIG problem !

• The cluster-cluster correlation function $\boldsymbol{\xi}$

- Cosmology (DE) has two effects
 - Geometrical (as for SN)
 - Gravitational (structure formation)

Outline

The XMM-LSS pilot survey DE with XXL, the largest XMM programme

3.X-class : a new method for interpreting cluster number counts

4.Future

The XMM-LSS field

- 11 deg2 paved with 10-20 ks and including the SDS : 99 observations separated by 20'
- Optical coverage by the CFHTLS
- IRAC + MIPS survey from SWIRE
- Plus many others (VLA, GMRT, Integral, ...)
- A European consortium of ~ 30 scientists

XMM-LSS clusters of galaxies and their optical counterpart (CFHTLS)

Main results from the XMM-LSS 'pilot-survey'

has unveiled a number of practical/theoretical issues

1) An unambiguous selection function

- For cosmological purposes, it is very necessary to have a purely X-ray selected cluster sample
 → ab initio modeling
- This implies a 2D selection function

Pacaud et al 2006, 2007

Example : XLSSC 051 (Pacaud et al. 2007) 300 counts in 0.5-2 keV

Not a flux limit !

2 clusters with same flux

detected not

not detected

~ surface brightness limited

The cluster selection process

3 classes of extended sources

Green = AGNs

Magenta = clusters

Red = Spurious

Class 1 (C1): ~ 6/deg² no contamination

Class 2 (C2):

~ 5 more / deg² + 5 false det. 50% contamination

Class 3 (C3):

other clusters 15-20/deg²

Pacaud et al 2006

Detection rates

Class 1 sample

~ surface brightness limited

limit!

Pacaud et al 2006

Results from the first 5 deg2

First attempt to self-consistenlty model selection effects in the scaling relations

2) For cluster scaling laws, selection effects appear to be critical

- Clusters selected for the determination of the scaling relations are biased toward the brightest objects with respect to the mean (as are the current parent samples)
- This explains the discrepant results, not only in evolution but also for the local laws (still recently— see *e.g. Reichert et al 2011 for a review*).
- The role of dispersion (still uncharacterised at z~0) :
 - Needed to correct for the selections effects
 - degenerate with $\sigma_{\rm 8}$, and to some extent with the slope and normalisation of the S.L.
- Sole escape route: fit scaling relations, cosmology and selection effects at the same time (*e.g CH-HR method*).

➔ Homogeneous cluster surveys greatly help

3) Distant clusters

- 10 ks XMM are enough to detect a Coma cluster at z = 2.
- 1-2 C1 clusters per deg² beyond z>1
- Clusters at z>1.2 are readily identifiable
 - extented sources without counterpat in the I band
 - always have a counterpart in IRAC!
 - we have some 8 candidates, observed with HAWKI and undergoing spectroscopic confirmation

A distant candidate at z ~ 1.5

 ID_1762

I 3.6 μm 4.5 μm

Ancillary data

- Having uniform coverage in u,g,r,i,z +
 - 3.5, 4.6 μm has proven extremely poverful
 - Cluster ID
 - Photo-z
- Optical spectroscopy (clusters <1) is the bottle neck
- IR spectroscopy (clusters >1.5) is a nightmare

The XXL survey or Dark Energy Now!

> More than 100 Co-Is officially registered Website http://irfu.cea.fr/xxl

The XXL survey an XMM Very Large Programme

- Builds on the XMM-LSS experience
- 2 areas of 25 deg² each, paved with 10 ks XMM observations
 - 3Ms allocated in December 2010
 - Some 3Ms of already existing data
- Main science goal: the equation of state of the dark energy from clusters of galaxies
- Hot topics for AGNs and clusters and XRB

25 deg² in CFHTLS-W1 2h23 -5d00 (extension of the XMM-LSS field)

In red: the new observations (126) $\Delta \alpha = \Delta \delta = 20'$ everywhere

25 deg² in BCS 23h30 -55d00 (extension of the XMM-BCS field)

In red: the new observations (80) $\Delta \alpha = \Delta \delta = 20'$ ($\Delta \alpha = \Delta \delta = 23'$ in the initial central survey)

The cosmological quantities

• ξ : 3D correlation function

 \Rightarrow ξ increases the contraints by a factor of ~ 2

Predictions for XXL = 50 deg²

Table 7. Cosmological constraints. Survey configuration A2 - 50 deg² 1/4 depth (10 ks XMM exposures) $(1-\sigma \text{ errors on } w_0 / w_a)$

Selection	Redshift range	dn/dz + Planck	dn/dz + ξ + Planck
C1 (pessimistic)	0 < z < 1	2.77 / 5.98	0.97 / 3.08
C2 (optimistic)	0 < z < 2	1.14 / 2.44	0.55 / 1.70

Table 8. Cosmological constraints from clusters following the DETF survey designs1- σ errors on w_0 / w_a Ref.StagePessimisticOptimisticDark Energy Task Force
*clusters*III0.70/2.110.26/0.77IV0.73/2.180.24/0.73

XXL

Pierre et al 2011

Cluster 'hot topics'

Specific to XXL

- The DE equation of state
- The group population at z~0.5
- Mass measurements (X,optical, lensing, IR, S-Z)
- Census of the 1<z<2 clusters
 - volume : 0.6 Gpc³
 - compared to the SDSS within 0<z<0.3 : 1.4 Gpc³

AGN 'hot topics'

Specific to XXL

More than 200 X-ray AGNs/deg2

- Large Scale Structure
- Distant / Exotic AGNs
- The statistics of lensed QSOs

Associated surveys

• Equatorial field (LSS) 25 deg²

_	CFHTLS, HSC	optical
—	ACTpol, AMiBA	SZ
—	UKIDSS	NIR 9 deg2
_	Spizter/SWIRE	MIR 9 deg2
—	Herschel/HERMES	FIR 9 deg2
—	VISTA/VIDEO	deep survey 4.5 deg2
—	WIRCAM	shallow K survey
—	eRosita	Х
_	GAMA	spectroscopy and multi- λ z<0.5
—	VIPERS	spectroscopy (VIMOS@VLT) 14 deg2
	Fuclid	ontical NIR
_	Luciiu	
– Sout	thern field (BCS) 25 deg ²	
– Sout –	thern field (BCS) 25 deg ² BCS, DES	optical
Sout –	thern field (BCS) 25 deg ² BCS, DES Spitzer/SSDS	optical MIR
- Sout - -	thern field (BCS) 25 deg ² BCS, DES Spitzer/SSDS ACT, SPT	optical MIR SZ
- Sout - - -	thern field (BCS) 25 deg ² BCS, DES Spitzer/SSDS ACT, SPT VISTA/VHS	optical MIR SZ NIR
_ Sout _ _ _ _	thern field (BCS) 25 deg ² BCS, DES Spitzer/SSDS ACT, SPT VISTA/VHS Herschel- <i>spire</i>	optical MIR SZ NIR FIR
= Sout = - - - -	thern field (BCS) 25 deg ² BCS, DES Spitzer/SSDS ACT, SPT VISTA/VHS Herschel- <i>spire</i> eRosita	optical MIR SZ NIR FIR X

- ... and many others in preparation (Chandra, eVLA, Herschel, ASKAP, ATCA, WIRCAM_deep, LOFAR....)

Black: existing or on-going or planned survey (if the area covrered is not indicated, this means that the full region 25 deg² is covered)

Pink: in preparation

٠

- Individual source catalogues
- Multi- λ catalogues
- Photo-z
- Special efforts on:
 - Requirements for band merging
 - Photometric uniformity

2) XMM surveys using the XMM archive.

Cumulative area to date: ~ 100 deg²

The XCS survey started in 2000 by Romer et al

Traditionnal approach of dn/dz => redshifts are needed!

A catalogue of 503 clusters published in 2011 464 with redshift 462 with temperature

No cosmological analysis published to date

The HR-CR method and the X-CLASS survey

started in 2009

 N. Clerc, M. Pierre, F. Pacaud, T. Sadibekova, arXiv:1109.4440, MNRAS in press
 N. Clerc, T. Sadibekova, M. Pierre, F. Pacaud, J.-P. Le Fevre, C. Adami, B. Altieri, I. Valtchanov arXiv:1109.4441 MNRAS in press

Rationale

- We have a quasi-automatic pipeline that allows a ~ blind selection of X-ray clusters: C1
- We have a data management facility that provides :
 - a quick ingestion of the cluster X-ray/optical data
 - a screening procedure

➔ Process the XMM archive to inventory all C1 clusters

- Use the DSS to remove nearby galaxies, saturated pointsources, etc...
- Study the LogN-LogS (logN-LogCR) in several bands to constraint the cluster scaling laws for a given cosmology.
- ... actually, more info is available...
- Construct X-ray colour-magnitude diagrams based on instrumental count-rates.

Temperature (keV)

- CR in [0.5-2] keV (~flux)
- HR = [1-2]/[0.5-1] (~spectrum)

The CR-HR distribution

[1-2] keV / [0.5-1] keV hardness ratio (HR)

[0.5-2] keV Count-rate (CR, cts/s)

Cosmology (Λ CDM,...) $\frac{dn}{dM \, dz \, d\Omega}$

X-ray observables: Count-rates in given bands and errors ICM spectrum Cosmology (Λ CDM,...) $\frac{dn}{dM\,dz\,d\Omega}$

+ measurement errors

[1-2] keV / [0.5-1] keV hardness ratio (HR)

10 ks XMM exposures

Fisher analysis

with a realistic implementation of the impact of the CR measurement errors

- HR-CR (no z) is much more efficient than dn/dz (requiring z)
- z-HR-CR is comparable to dn/dM/dz for cosmology
- z-HR-CR is more efficient than dn/dM/dz for cluster evolutionary physics.
- For the z-HR-CR method, photo-z are sufficient

X-CLASS

 Extending the XMM-LSS methodology to 2774 observations selected in the XMM archive (public as of May 2010)

Comparison between XCS and X-CLASS

Count-rate measurements

Semi-automatic (= semi-manual !) procedure :

- Masking of contaminants
- Background adjustment
- Aperture photometry
- Same scheme for all other bands

~ 'GCA' technique (Böhringer 2000)

Final sample

- 845 C1 candidates in total
- 220 « new » (not in NED, not in XCS-DR1)
- Dedicated database

														(
id	xclass	name	R.A. pipeline measured	DEC pipeline measured	NED	quality	class	obs	main	nb links	redshift	status	total rate	profile
20	<u>0020</u>	0001930301_84_v3.3_c1_10ks	193.438 193.438	10.195 10.195	-	1	z > 0.3	0001930301_10ks					0.052	<u>data</u>
23	<u>0023</u>	0010420201_53_v3.3_c1_10ks	194.292 194.292	-17.412 -17.406	<u>21</u>	1	0 < z <~ 0.3	<u>0010420201_10ks</u>	•	•	<u>0.047</u>	confirmed	12.622	<u>data</u>
33	<u>0033</u>	0030140101_1_v3.3_c1_10ks	193.679 193.674	-29.223 -29.223	7	1	0 < z <~ 0.3	0030140101_10ks			<u>0.053</u>	confirmed	4.290	<u>data</u>
34	<u>0034</u>	0030140101_3_v3.3_c1_10ks	193.595 193.593	-29.016 -29.013	<u>25</u>	1	0 < z <~ 0.3	<u>0030140101_10ks</u>	0	•	<u>0.053</u>	confirmed	3.667	<u>data</u>
35	<u>0035</u>	0032141201_44_v3.3_c1_10ks	196.274 196.274	-10.280 -10.279	-	1	z > 0.3	0032141201_10ks	¢	*	<u>0.330</u>	photometric	0.047	<u>data</u>
38	<u>0038</u>	0037981801_11_v3.3_c1_10ks	36.567 36.568	-2.666 -2.666	1	1	0 < z <~ 0.3	0037981801_10ks	¢	•			0.165	<u>data</u>
39	<u>0039</u>	0037981801_112_v3.3_c1_10ks	36.499 36.499	-2.827 -2.828	1	1	0 < z <~ 0.3	0037981801_10ks	¢	\$ 	<u>0.280</u>	confirmed	0.031	<u>data</u>
40	<u>0040</u>	0037982601_56_v3.3_c1_10ks	35.188 35.189	-3.434 -3.434	1	1	z > 0.3	http://xr	<u>nm-</u>	lss.in	2p3.fr	:8080/I	4sdb/	<u>data</u>

The X-CLASS 'science' sample

- More stringent selection (C1+)
- Restricted to off-axis < 10'
- Count-rate selection : 0.009<CR<0.5 cts/s
 - Eliminates very faint sources
 - Eliminates bright clusters for which the cluster selection function is much more complicated

CR-HR analysis

Fitting procedure

- Flat ΛCDM
- Fixed local M-T
- Fixed local L-T
 - Pratt 09 'ALL'
 - Pratt 09 'Non Cool Core'

• MCMC chains

SIMULTANEOUS FIT of Cosmology – Scaling Relations – Selection function

Pratt et al '09

Cosmo + evolution of scaling laws

Without any redshift information !

Cosmo + evolution of scaling laws

Predicted logN-logS with best model (red)

Use of local scaling laws

- Main hurdle in the study
- Differences between different scaling laws lead to different results :
 - 'ALL' : $\Omega_m \sim 0.15\,,\,\sigma_8 \sim 0.96$
- Selection effects affecting samples for calibration of scaling laws ?
- Importance of scatter, degenerate with S.L.

Forcasts for eRosita

Future : eRosita

- All-sky survey: 20,000 deg2 extragal.
- Eff. Area ~ XMM EPIC MOS+PN
- 2.5 ks mean exposure
- Sensitivity: 2.5 clusters/deg2
- z-phot $\Delta z=0.03$
- Planck priors : Ω_m , σ_8 , Ω_b , n_s , h

Future : eRosita + (z)-CR-HR

	C	R-HR	z-CR-HR				
	No prior	Planck priors	No prior	Planck priors			
w_0	0.6	0.4	0.1	0.1			
w_a	1.0	0.9	0.3	0.3			
$\gamma_{ m z,MT}$	1.3	0.1	0.2	0.05			
$\gamma_{z,\mathrm{LT}}$	0.8	0.5	0.3	0.1			

Local scaling laws completely free (even scatter)

CONCLUSION

Summary

- An appropriate knowledge of the scaling laws including dispersion is critical for doing cosmology with X-ray clusters... will this ever be achievable by dedicated programmes (limited in z-mass range – single slope) ?
- The CR-HR method allows a direct and simultaneous fit of
 - cosmology
 - scaling laws + dispersion
 - selection effects

And allows by-passing the mass determination steps

- In reality, S.L. act like catalysts in the CR-HR procedure (for given mass and redshift ranges)
- For the (next?) future, one can imagine drawing a wide range of CR-HR diagrams from simulations where both cosmology and physics are varied And thus, completely by-pass the mass and S.L. determinations: Cluster physics will be constrained by the best fitting simulation run.

