
Fluid modeling for the slow dynamics of 
collisionless space plasmas

T. Passot and P.L. Sulem 
in collaboration with

P. Hunana and D. Laveder and Marradi

Turbulent cascade in the solar wind: anisotropy and dissipation
CIAS, Observatoire de Meudon, September 17-21, 2012

Research supported in part by the European Commission's 7th Framework Program (PF7:2007-2013) 
under grant agreement SHOCK (project # 284515) and Programme Terre-Soleil of INSU-CNRS.



OUTLINE

� Space plasmas: Main features and some debated questions

� How to model collisionless plasmas ?

� Landau fluid models

� The various models and their capability of describing linear waves

� 3D simulations of meso-scale turbulence : role of ion Landau damping

� 1D simulation of non-resonant ion heating and constraining effect of the 
mirror instability

� Conclusions



Space plasmas are magnetized and turbulent

β ≈ 1, Ms ≈ 1

Fluctuations: power-law spectra 
extend to ion gyroscale and below

Dispersive and kinetic effects cannot be ignored.

Presence of coherent structures (filaments, shocklets, magnetosonic solitons, 
magnetic holes) with typical scales of  a few ion Larmor radii.

Among the debated questions: 

• Spectral energy distribution and its anisotropy 
• Dissipation mechanisms
• Heating of the plasma: temperature anisotropy and resulting micro-instabilities
• Particle acceleration

The concepts  of waves make 
sense even in the strong 
turbulence regime.

Space plasmas: Main features and debated questions

solar
wind



How to model collisionless plasmas ?

Solar wind is almost non collisional

Vlasov-Maxwell simulations : hardly possible on the present day computers
in three space dimensions   (6 variables + time, and a broad range of time scales).

Gyrokinetics (Howes, ApJ 651, 2006, Schekochihin et al., ApJ Supp., 182, 310, 2009),
concentrates on the quasi-transverse dynamics and averages out the fast waves.
(Applicability to space plasmas still to be validated).

Gyrokinetic simulations (G. Howes, PoP 15, 055904 , 2008; PRL 107, 035004, 2011) are now 
feasible and show the presence of cascades both in the physical and velocity spaces in the 
range  k┴ρ≥1, but they remain challenging numerically and difficult to interpret.

One needs a fluid model that

• retains low-frequency kinetic effects: Landau dampi ng and FLR corrections
• can be integrated relatively fast, 
• allows for strong temperature anisotropies 
• does not a priori order out the fast magnetosonic waves.

Question : Can kinetic effects be ignored at large scales?



• Introduced by Hammett & Perkins (PRL 64, 3019, 1990) as a closure retaining linear 
Landau damping.

• Applied to large-scale MHD by Snyder, Hammett & Dorland  (PoP 4, 3974, 1997)
to close the hierarchy of moment equations derived from the drift kinetic equation:
Large-scale (LS) Landau fluids : applied to the Magneto-Rotational Instability
Quataert et al., ApJ 577, 524 (2002), Sharma et al., ApJ 596, 1121 (2003); ApJ 637, 952 (2006).

• Extended to dispersive MHD with Hall effect and large-scale FLR corrections
(Passot & Sulem, PoP 10, 3906, 2003; Goswami, Passot & Sulem, PoP 12, 102109, 2005;
Passot, Sulem & Hunana, PoP, 19, 082113, 2012):

Meso-scale (MS) Landau fluids.

• Inclusion of quasi-transverse scales extending beyond the ion gyroscale, under the 
gyrokinetic scaling

(Passot & Sulem, PoP 14, 082502, 2007; Passot, Sulem, Hunana, PoP 19, 082113, 2012):  

FLR-Landau fluids .

In contrast with gyrokinetics, Landau fluids retain fast waves that are accurately 
described, except close to resonances.

Landau-fluid can describe regimes with strong temperature anisotropy.

Fluid description retaining low-frequency kinetic effects: Landau fluid models



Landau fluids

For the sake of simplicity: neglect electron inertia, use quasi-neutrality.

Ion dynamics: derived by computing velocity moments from Vlasov Maxwell equations.

Decompose the ion pressure as:

= B / |B|.

Electron pressure tensor is taken gyrotropic (considered scales >> electron Larmor radius)

FLR corrections

Use exact equations for the gyrotropic pressures (that include heating/cooling due to the work 
of the non-gyrotropic pressure forces).

Simplifications are introduced at the level of the heat flux equations 
(see Ramos PoP 12, 052102 (2005) for a set of nonlinear equations that nevertheless still assumes an ordering)

Terms that involve the non-gyrotropic pressure and heat fluxes are kept only when
they appear linearly.



The completion of this type of fluid model requires the determination of:

(1) closure relations to express the 4th-rank cumulants
(closure at lower or higher order also possible)

Only issue when dealing with the Large-Scale Landau fluid model
(Snyder, Hammett & Dorland, PoP 4, 3974, 1997).

(2) (non gyrotropic) FLR corrections to the various moments.



The 4th-rank cumulants are obtained from the linearized kinetic theory , 
assuming small frequencies with respect to the ion gyrofrequ ency.

This requires
either long wavelengths with respect to the ion gyroradius 
or quasi-perpendicular directions. 

IN PRACTICE:
The kinetic expressions typically depend on electromagnetic field components
and involve the plasma dispersion function (which is nonlocal both in space and time). 

These various expressions are  expressed in terms of other fluid moments 
in such a way as to minimize the occurrence of the plasma dispersion function. 

The latter is otherwise replaced by suitable Padé approximants, thus leading to
local-in-time expressions. At some places, a Hilbert transform with respect 
to the longitudinal space coordinate appears, that modelizes Landau damping.

(1) Brief description of the hierarchy closure

This procedure ensures consistency with the low-frequency linear kinetic theory, up to the 
use of Padé approximants.

For example, from 
kinetic theory

leads to, in the LF model: 



Two methods to determine the non-gyrotropic element s of the tensors

Solve the (coupled) algebraic equations that result from the projection
of the tensorial pressure equations, orthogonally to the gyrotropic  "directions".

First method

To obtain an explicit solution, this procedure requires an expansion in a small parameter,
usually taken as the time and space scale separation with the ion gyroscales. 

Leads to the Meso-Scale Landau fluid model .

This approach has the great advantage of being fully nonlinear. 
Its algebraic complexity, however precludes an easy numerical implementation.
This is even more cumbersome at the level of the heat flux which enters this formula.

A second order solution was explicited in a linear setting in:
Goswami, Passot & Sulem,  PoP 12, 102109 (2005).

It is shown that all non-gyrotropic contributions are necessary to reproduce the linear 
growth rate of the mirror instability, and in particular the restabilization at small scales.
(Passot, Sulem & Hunana, PoP 19, 082113 (2012))

Note that the mirror-instability threshold is captured by LS Landau fluids (including only Landau damping).



Second order terms are required to capture the dispersion relation of 
KAWs                          and magnetosonic waves

Hazegawa & Chen, Phys. Fluids, 19, 1924 (1976) Mikhailovskii & Smolyakov, JETP 61, 109 (1985)

KAW , β=0.01, τ=1, θ =atan(1000)

Magnetosonic waves : β=3, τ=1, θ=π/2

wherevalid when

1st order

2nd order

1st order

2nd order

theory

theory

FLR-Landau fluid 
(discussed later)

Theory:

ρ≡rL

Theory:

1

LS-LF FLR-LF



Mirror growth rate:

In the case of cold electrons, an asymptotic linear analysis near threshold
from the MS-Landau fluid model leads to 

contribution from RNG (non-gytropic contribution to 4th order 
moment

α= -3/2  when evaluated from kinetic theory.
In the fluid framework, its correct determination requires the heat flux contribution σ.

The growth rate then identifies with that of the kinetic theory.

Contributions originating from the gyroviscosity cancel out. The system is stabilized at small scales by the 
nongyrotropic correction RNG to the fourth-rank cumulants.

Hilbert transform

Mirror instability can develop when  T┴>T║.
Driven by Landau resonance and arrested at small scales by FLR corrections



In the case of warm (and possibly anisotropic) electrons, comparison with
the low-frequency kinetic theory (Kuznetsov, Passot  & Sulem, PoP, in press)

β=1, τ=5.1501, ap=ae=1.15, θ=78.46°

2nd order

1st order

theory



This Meso-Scale Landau fluid model, nevertheless leads to spurious instability
(beyond its range of validity) for  KAWs when temperature anisotropy is too large.

KAW, θ=85

β//=1.5
ap=1.5
τ=1
ae=1.1

WHAMP
(kinetic)

Meso-Scale Landau fluid

Although the instability occurs beyond the spectral validity range of the model, such unstable 
scales are usually present in simulations not limited to the largest MHD scales.  

In such a regime, an accurate description of the small scales is required, at least at 
a linear level.

θ= 85°



The other possiblity to determine FLR contributions is to use the 
linear kinetic theory in the low-frequency limit (in a way similar
to what is done for the closure of the hierarchy) :

Lrk//

Lrk⊥

ε

1

Lr : ion Larmor radius

Second method

In this case, the expansion is valid for:
• quasi-transverse fluctuations

• hydrodynamic scales with

No need of  an arbitrary truncation: all linearized fluid equations are satisfied when 
plugging the fluid moments directly calculated from the LF kinetic theory, except the 
perpendicular velocity equation: it reduces to the perpendicular pressure balance 
condition, as in gyrokinetics.



• The model conserves the total energy:

Conservation of energy is independent of the heat fluxes and subsequent equations, 
but requires retaining  the work done by the FLR stress forces.  

• Implementation of the Landau damping via Hilbert transforms, and also of the
FLR coefficients as Bessel functions of k┴ρ, is easy in a spectral code.

• Electron Landau damping is an essential ingredient in many cases
(limiting the range of validity of isothermal electrons often used in hybrid simulations).

• Possibility of including weak collisions (Gross and Krook 1956, Bhatnagar 1962, Green 1973)
in a form that preserves energy conservation. 

• All linearized fluid equations are satisfied when plugging the fluid moments directly
calculated from the LF kinetic theory, except the perpendicular velocity equation: it
reduces to the perpendicular pressure balance condition, as in gyrokinetics.



Mirror modes growth rate: comparison of FLR-Landau fluid with kinetic theory
(WHAMP code)



Frequency and damping rate of Alfvén waves:

oblique propagation

Does not capture
resonance

quasi-transverse propagation
(Kinetic Alfvén waves)

frequency damping rate
frequency damping rate
θ≈84°

θ=89.9°



Kinetic Alfvén waves

Meso-Scale Landau fluid is correct up to

KAW, θ=89°

β//=2
ap=ae=1
τ=1

Eigenmode

Magnetic compressibility

Damping rate

Meso-Scale Landau fluid

WAMP
(fully kinetic)

FLR-Landau fluid

x component

y component

z component

electric 
field

magnetic  
field

velocity
field

Comparison FLR-Landau fluid with full kinetics≈1



For large β and angles close to 90°, 
the frequency can exceed the ion gyrofrequency without encountering resonance.
In this case, the FLR-Landau fluid remains valid.

θ=80° (red), θ=83° (green), θ=86° (blue), θ=89° (magenta) 

real frequency

damping rate

Comparison FLR-Landau fluid (crosses) with full kinetics (continuous line)



The isothermal electron equation of state leads to drastically different results
already when k┴ρ <1

Damping rate underestimated
by a very large factor.



magnetic compressibility:

electric field polarization: 
left polarizized wave
right polarized wave

Proton beta is 0.1, 0.5, 1, 2, 4, 10

polytropic
bi-fluid

LS-LF

FLR-LF

Polytropic bi-fluid : incorrect even at large scales; Landau damping is not sufficient to reproduce kinet ic theory .
FLR-Landau fluid provides a precise agreement with kinetic theory.     (Hunana et al. ApJ, submitted).



Three-dimensional simulations of decaying turbulence:
role of ion Landau damping



3D MS-Landau fluid simulations in a turbulent regim e
(simplified model)  (Hunana, Laveder, Passot, Sulem  & Borgogno,   ApJ  743, 128, 2011).

Freely decaying turbulence (temperatures remain close to their initial values)

� Isothermal electrons
� Initially:  

no temperature anisotropy; 
equal ion and electron temperatures
incompressible velocity.

Pseudo-spectral code 
Resolution: 1283 (with small scale filtering)

Size of the computational domain: 32 π inertial lengths in each direction
Initially, energy on the first 4 velocity and magnetic Fourier modes kdi= m/16 (m=1,…,4)
with flat spectra and random phase.



Compressibility reduction by Landau damping

Comparison of MS-Landau fluids and Hall-MHD simulat ions

MS -

Important in solar wind context: Although solar wind is a fully compressible medium, 
the turbulent fluctuations behave as is there were weakly compressible.



Spectral anisotropy
Hall-MHD 

FLR-Landau fluid 

Transverse directions                          Parallel direction              

Kinetic
energy

Magnetic 
energy

Strong reduction of the parallel transfer



Hall-MHD                             FLR-Landau fluid

Slow waves
are strongly
damped

bx bx

by by

Frequency analysis: 



Development of temperature anisotropy



Need for a fully nonlinear approach.

Simulation of perpendicular
ion heating under the action
of given randomly phased 
KAW with wavelength comparable 
to the ion Larmor radius on 
particles for

(Chandran et al. ApJ 720, 503, 2010
see also Bourouaine, 2008, 2011)

Non-resonant heating:

Proton magnetic moment versus 
the heliocentric distance 
(Marsch, Living Review Solar Phys., 2006)

Hybrid simulations of quasi-perpendicular turbulence
show preferential perpendicular heating of ions,
not directly related to the gyroradius but to a temporal
scale (Markovskii & Vazquez, ApJ 739, 22 (2012)).

Ion distribution functions elongate préferentially along
or across magnetic field near regions of strong magnetic
activity (current sheets) in 2D hybrid simulations 
(Servidio et al. PRL 108, 045001 (2012)).

Goal : Study (nonresonant) heating
due to KAWs within LF simulations 
and identify its physical origin



Parameters of the 1D FLR-Landau fluid simulations:

• Angle of propagation: 80o with respect to the ambient magnetic field

• White noise in time random driving around kinj, applied on the perpendicular 
velocity component (uy) each time the sum of kinetic and magnetic energy falls 
below a given threshold: it is intended to simulate the injection of energy from the 
end of the solar wind Alfvén wave cascade.

Resulting root mean square of the transverse magnetic field fluctuations is of the 
order of 0.12 times the magnitude of the ambient field (realistic for the solar wind)

• Isotropic initial temperatures; various parallel proton β.

• Size of the domain L measured in units of ion inertial length

• Number of grid points: typically N=256 (after partial desaliazing).

• No artificial dissipation is added. 

Laveder, Marradi, Passot & Sulem, Geophys. Res. Lett. 38, L17108 (1974)



Ti
┴

Ti
//

Fixing kinj/kρ=0.087 (relatively small scale) and varying β (thus changing the domain size)

Red: β=0.6, L=12 π
Green: β =1.2, L=16 π
Blue: β =2.4, L=22 π
Pink: β =9.6, L=144 π

β=0.6

β=1.2

β=2.4

β=9.6

Perpendicular heating  and (early time) parallel cooling of ions,

with a larger efficiency as β is reduced
(in agreement with  simulations of the action of prescribed KAW,
Chandran et al. ApJ 2010)

Time variation of the (space averaged) ion temperatures

With injection at larger scales, 
there is a critical value of β, 
below which parallel ion heating
and above which perpendicular 
heating dominates.



Parallel electron temperature (same conditions)

β=0.6

β=1.2

β=2.4

Te
//

Efficient parallel electron heating at small β



Parallel cooling

Perpendicular heating

β=0.6

FLR contributions

total temperature variation 

Origin of heating/cooling:

Dominant FLR contributions:
more important close to mirror threshold

Space-averaged magnetic moment
per unit mass

Hall term

nongyrotropic
heat flux

nongyrotropic 
pressure

dominant contribution

Both parallel and perpendicular heat fluxes contribute to the variation of  



Comparison with solar wind data

Solar wind data
Bale et al. PRL 103, 21101 (2009)

A large majority of the observational measurements 
in the case of a predominant ion perpendicular
heating are limited from above by the curve 

that fits the contour associated with the growth rate 
of the mirror instability in linear kinetic computations assuming 
bi-Maxwellian ions and isothermal electrons.

Ωi

FLR-Landau fluid simulations (with weak collisions in the form of a BGK operator):

With collisions, smaller distance to threshold.

No collision

νie=10-5

νie=0.25 x 10-5

νie=10-5

With collisions, points characterizing 
the stateof the system follow the 
threshold curve

Equal parallel and perpendicular 
electron temperatures.



Summary
MS and FLR Landau fluids suitable for plasma dynamics at the ion gyroscale.

They retain 

hydrodynamic nonlinearities + linear approximation of low-frequency kinetic effects
(Landau damping & FLR corrections)

Consistent with the quasi-transverse character of the turbulent cascade.
Suitable for simulations of the solar wind turbulence, especially with small wave
amplitude (for which PIC simulations are not suited) and in absence of resonance.

Landau damping: - depletes compressible effects and inhibits longitudinal transfer
- leads to a correct description of the mirror instability threshold.

FLR corrections: - arrest of mirror instability at small scales 
- affect KAWs and magnetosonic dispersion relations and polarization

even at MHD scales.

A sufficiently accurate description of the FLR is needed to prevent small-scale 
spurious instabilities.

FLR-Landau fluid accurately reproduces dispersion relation of (quasi-transverse) 
kinetic Alfvén waves and mirror instability at all the scales.



The FLR-Landau fluid model allows for a study of heating due to Alfvén wave turbulence.
(Simulations are possible without addition of artificial dissipation, at least in 1D).

Main results :

• Perpendicular ion heating is possible in nonresonant situation with KAW driving, 
when turbulence typical scales are close enough to the ion gyroradius. 
It generates a self-regulated state where mirror instability constrains the growth 
of the temperature anisotropy. 

• At constant injection scale, heating efficiency increases as β decreases.

• With injection at larger scales, heating can preferentially affect ion parallel temperature
(as well as the electron parallel temperature) at small values of β.

• A diagram of the plasma state in (β//, T┴/T//) plane, similar to the one observed in the 
slow solar wind, is obtained, especially in the presence of a weak level of collisions
that helps to constrain the plasma close the mirror instability threshold.

Forthcoming developments: Three-dimensional  FLR-Landau fluid simulations.


