On the generation of oblique high-frequency waves by ion beams in the solar wind

Daniel Verscharen and Benjamin D. G. Chandran

Space Science Center, University of New Hampshire, USA

September 19, 2012

Alpha beam in the solar wind lon differential speed

- Drift between protons and alpha particles in the collisionless fast solar wind
- Deceleration during transit through heliosphere
- Upper threshold: $\sim v_{\rm A}$

Alpha beam in the solar wind lon differential speed

Fig. 11. Histograms of the ion differential speed in percentage of the local Alfvén speed for low, intermediate, and high-velocity streams.

(Marsch et al., 1982)

• • = • • = •

< A

Alpha beam in the solar wind Hybrid simulations

- The deceleration has not yet been fully understood
- Hybrid simulations can model the non-equilibrium physics of streaming ion species
- Several "streaming instabilities" have been found
- \bullet Instability thresholds: $\sim 1.7 v_{\rm A}$ for parallel propagation, $\sim v_{\rm A}$ for oblique propagation

Quasilinear theory Temporal evolution of the distribution function

$$\frac{\partial f}{\partial t} = \lim_{V \to \infty} \sum_{n = -\infty}^{+\infty} \frac{q^2}{8\pi^2 m^2} \int \frac{1}{V v_{\perp}} G v_{\perp} \delta(\omega_{\rm r} - k_{\parallel} v_{\parallel} - n\Omega) \times \\ \times |\psi_{n,k}|^2 G f \mathrm{d}^3 k$$

with the operator

$$G \equiv \left(1 - \frac{k_{\parallel} v_{\parallel}}{\omega_{\rm r}}\right) \frac{\partial}{\partial v_{\perp}} + \frac{k_{\parallel} v_{\perp}}{\omega_{\rm r}} \frac{\partial}{\partial v_{\parallel}}$$

and the amplitude function

$$\begin{split} \psi_{n,k} &= \frac{1}{\sqrt{2}} \left[E_{k,r} e^{i\phi} J_{n+1} \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) + E_{k,l} e^{-i\phi} J_{n-1} \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \right] \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\perp}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\perp}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\perp}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\perp}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \\ &+ \frac{v_{\perp}}$$

The delta function

$$\delta(\omega_{\rm r} - k_{\parallel} v_{\parallel} - n\Omega)$$

determines the resonant particles. Only particles with the resonance speed

$$v_{\parallel} = v_{\mathrm{R},n} \equiv \frac{\omega_{\mathrm{r}} - n\Omega}{k_{\parallel}}$$

of order n can resonate.

▶ < 문 ▶ < 문 ▶</p>

臣

The characteristics of the operator

$$G \equiv \left(1 - \frac{k_{\parallel} v_{\parallel}}{\omega_{\rm r}}\right) \frac{\partial}{\partial v_{\perp}} + \frac{k_{\parallel} v_{\perp}}{\omega_{\rm r}} \frac{\partial}{\partial v_{\parallel}}$$

with constant phase speed $v_{\rm ph}=\omega_{\rm r}/k_{\parallel}$ are circles in velocity space with

$$\left(v_{\parallel} - v_{\rm ph}\right)^2 + v_{\perp}^2 = \text{const.}$$

Therefore, the quasilinear evolution leads to a diffusion along circles around the phase speed of the interacting wave.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Quasilinear theory Ingredients

The amplitude function

$$\begin{split} \psi_{n,k} &= \frac{1}{\sqrt{2}} \left[E_{k,r} e^{i\phi} J_{n+1} \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) + E_{k,l} e^{-i\phi} J_{n-1} \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \right] \\ &+ \frac{v_{\parallel}}{v_{\perp}} E_{kz} J_n \left(\frac{k_{\perp} v_{\perp}}{\Omega} \right) \end{split}$$

has for parallel propagation (since $J_i(0) = \delta_{i,0}$) only cyclotron-resonant contributions from $E_{k,r}$ for n = -1, from $E_{k,l}$ for n = +1, and Landau-resonant contributions from E_{kz} for n = 0. Higher orders are weak. $E_{k,r} \equiv \frac{E_{kx} - iE_{ky}}{\sqrt{2}}$, $E_{k,l} \equiv \frac{E_{kx} + iE_{ky}}{\sqrt{2}}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Quasilinear theory Energy budget

If the particles lose energy, the wave gains energy. That is an instability.

The wave energy (averaged over many periods) is given by

$$W = \frac{1}{8\pi} \left[\boldsymbol{B}_{\boldsymbol{k}}^* \cdot \boldsymbol{B}_{\boldsymbol{k}} + \boldsymbol{E}_{\boldsymbol{k}}^* \cdot \frac{\partial}{\partial \omega} (\omega \varepsilon_{\rm h}) \boldsymbol{E}_{\boldsymbol{k}} \right] \Big|_{\omega = \omega_{\rm h}}$$

This term can become negative depending on the contribution of the medium (due to $\frac{\partial}{\partial \omega} \varepsilon_h$).

- Can only happen in media that are not in thermodynamic equilibrium
- Amplitude growth leads to decrease of energy of the medium
- Dissipation leads to growth instead of damping
- Total energy is (of course) conserved

The following rules apply:

- $\bigcirc \ 0 < \omega_{\rm r}/k_{\parallel} < U_{\rm i}$
- 2 The resonances with $n = \pm 1$ and n = 0 of the alpha particles are the only relevant resonances
- O The resonance n = +1 needs a mode with $E_{k,l} ≠ 0$, the resonance n = -1 needs a mode $E_{k,r} ≠ 0$, and n = 0 needs $E_{k,z} ≠ 0$
- (5) A wave, which is unstable according to points 1 through 4, is damped as long as W < 0 and vice versa

Examples of the dispersion

left: $U_{\rm i} = 0.1$, right: $U_{\rm i} = 1.1$

< 17 > <

≣) ≣

The wave-energy state

Verscharen & Chandran Oblique waves and ion beams

Cold plasma dispersion and polarization Parallel case

Verscharen & Chandran Oblique waves and ion beams

- 4 回 2 - 4 □ 2 - 4 □

Cold plasma dispersion and polarization Parallel case with higher beta

Verscharen & Chandran Oblique waves and ion beams

Cold plasma dispersion and polarization $_{\rm Oblique\ case}$

Verscharen & Chandran Oblique waves and ion beams

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results

- The parallel magnetosonic instability threshold is at $U_{\rm i}\gtrsim 1.7 v_{\rm A}$ in our case
- It requires quite high (parallel alpha) betas
- The Alfvén mode is stable in parallel propagation
- In oblique propagation, its polarization is modified, and Alfvén I is unstable for $U_{\rm i}\gtrsim 1.2v_{\rm A}$. For higher betas even earlier (be careful with dispersion!)
- It is also unstable at low wavenumbers due to Landau resonance (Alfvén II)
- Typical wavenumbers are in the range $k_{\parallel}v_{\rm A}/\Omega_{\rm p} = 0.2 \dots 0.9$, and the frequencies are in the range $\omega/\Omega_{\rm p} = 0.2 \dots 1.3$

▲□→ ▲ □→ ▲ □→

Literature

- S. P. Gary, L. Yin, D. Winske, and D. B. Reisenfeld. Electromagnetic alpha/proton instabilities in the solar wind. *Geophys. Res. Lett.*, 27:1355, May 2000. doi: 10.1029/2000GL000019.
- E. Marsch, H. Rosenbauer, R. Schwenn, K.-H. Muehlhaeuser, and F. M. Neubauer. Solar wind helium ions - Observations of the HELIOS solar probes between 0.3 and 1 AU. J. Geophys. Res., 87:35–51, January 1982. doi: 10.1029/JA087iA01p00035.

(日) (四) (日) (日) (日)

We use the dispersion of a cold plasma:

$$\boldsymbol{n} \times (\boldsymbol{n} \times \boldsymbol{E}_{\boldsymbol{k}}) + \varepsilon \boldsymbol{E}_{\boldsymbol{k}} = \begin{pmatrix} S - n_z & -iD & J + n_x n_z \\ iD & S - n^2 & M \\ J + n_x n_z & -M & P - n_x^2 \end{pmatrix} \begin{pmatrix} E_{kx} \\ E_{ky} \\ E_{kz} \end{pmatrix} = 0$$

with

$$\varepsilon = \begin{pmatrix} S & -iD & J \\ iD & S & M \\ J & -M & P \end{pmatrix},$$

• • = • • = •

Name	Resonance	Threshold	β_{\parallel}	Growth Rate
Parallel magnetosonic	n = -1	$\sim 1.7 v_{\rm A}$	high	high
Oblique magnetosonic	n = 0	$\sim 1.5 v_{\rm A}$	low	low
Alfvén I	n = -1	$\sim 1.2 v_{\rm A}$	low	high
Alfvén II	n = 0	$\sim 0.8 v_{ m A}$	low	low

イロン イヨン イヨン イヨン