37 from __future__
import annotations
41 _Shape = typing.Tuple[int, ...]
56 "host_obj_double_complex",
58 "host_obj_float_complex",
75 "syevd_double_complex",
77 "syevd_float_complex",
101 def __eq__(self, other: object) -> bool: ...
102 def __getstate__(self) -> int: ...
107 def __ne__(self, other: object) -> bool: ...
116 def value(self) -> int:
129 def __init__(self, context: context, i: int) ->
None:
131 Create a CarmaClock object which provides timing based on GPU clock count
134 context: (CarmaContext): carma context
136 i: (int): time buffer size
139 def tic(self) -> None: ...
140 def toc(self) -> None: ...
158 def activate_tensor_cores(self, flag: bool) ->
None:
160 Set the cublas math mode using tensor cores or not
162 def get_device(self, arg0: int) -> device: ...
164 def get_instance() -> context: ...
166 def get_instance_1gpu(arg0: int) -> context: ...
168 def get_instance_ngpu(arg0: int, arg1: numpy.ndarray[numpy.int32]) -> context: ...
204 def compute_perf(self) -> float:
209 def cores_per_sm(self) -> float:
214 def id(self) -> cudaDeviceProp:
216 :type: cudaDeviceProp
219 def name(self) -> str:
224 def total_mem(self) -> int:
229 class host_obj_double():
231 def __init__(self, h_data: numpy.ndarray[numpy.float64], malloc_type: MemAlloc = MemAlloc.MA_MALLOC) ->
None:
238 def __init__(self, d_data: host_obj_double) ->
None: ...
240 def nbElem(self) -> int:
247 def shape(self) -> numpy.ndarray[numpy.int64]:
251 :type: numpy.ndarray[numpy.int64]
254 class host_obj_double_complex():
256 def __init__(self, h_data: numpy.ndarray[complex128], malloc_type: MemAlloc = MemAlloc.MA_MALLOC) ->
None:
263 def __init__(self, d_data: host_obj_double_complex) ->
None: ...
272 def shape(self) -> numpy.ndarray[numpy.int64]:
276 :type: numpy.ndarray[numpy.int64]
279 class host_obj_float():
281 def __init__(self, h_data: numpy.ndarray[numpy.float32], malloc_type: MemAlloc = MemAlloc.MA_MALLOC) ->
None:
288 def __init__(self, d_data: host_obj_float) ->
None: ...
297 def shape(self) -> numpy.ndarray[numpy.int64]:
301 :type: numpy.ndarray[numpy.int64]
304 class host_obj_float_complex():
306 def __init__(self, h_data: numpy.ndarray[numpy.complex64], malloc_type: MemAlloc = MemAlloc.MA_MALLOC) ->
None:
313 def __init__(self, d_data: host_obj_float_complex) ->
None: ...
322 def shape(self) -> numpy.ndarray[numpy.int64]:
326 :type: numpy.ndarray[numpy.int64]
331 def __init__(self, h_data: numpy.ndarray[numpy.int32], malloc_type: MemAlloc = MemAlloc.MA_MALLOC) ->
None:
338 def __init__(self, d_data: host_obj_int) ->
None: ...
347 def shape(self) -> numpy.ndarray[numpy.int64]:
351 :type: numpy.ndarray[numpy.int64]
356 def __init__(self, context: context, h_data: numpy.ndarray[numpy.float64]) ->
None:
363 def __init__(self, context: context, d_data: obj_double) ->
None: ...
364 def __repr__(self) -> str: ...
366 def add_stream(self) -> int:
373 def add_stream(self, np: int) -> int: ...
374 def aimax(self, incx: int = 1) -> int:
378 def aimin(self, incx: int = 1) -> int:
382 def asum(self, incx: int = 1) -> float:
386 def axpy(self, alpha: float, source: obj_double, incx: int = 1, incy: int = 1, offset: int = 0) ->
None:
390 def clip(self, data_min: float, data_max: float) ->
None:
394 def copy(self, arg0: obj_double, arg1: int, arg2: int) ->
None:
398 def copy_from(self, data: obj_double, nb_elem: int = -1) ->
None:
402 def copy_into(self, dest: obj_double, nb_elem: int = -1) ->
None:
407 def del_stream(self) -> int:
417 def device2host(self, data: numpy.ndarray[numpy.float64]) ->
None:
421 def dgmm(self, vectX: obj_double, alpha: float = 1, side: str =
'r', matC: obj_double =
None, incx: int = 1) -> obj_double:
423 this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
425 def dot(self, source: obj_double, incx: int = 1, incy: int = 1) -> float:
429 def fft(self, dest: obj_double =
None, direction: int = 1) ->
None: ...
430 def geam(self, matB: obj_double, opA: str =
'N', opB: str =
'N', alpha: float = 1, matC: obj_double =
None, beta: float = 0) -> obj_double:
432 this method performs the symmetric rank- k update
434 def gemm(self, matB: obj_double, op_a: str =
'N', op_b: str =
'N', alpha: float = 1, matC: obj_double =
None, beta: float = 0) -> obj_double:
436 this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta * matC
438 def gemv(self, vectx: obj_double, alpha: float = 1, op: str =
'N', vecty: obj_double =
None, beta: float = 0) -> obj_double:
440 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
442 def ger(self, vecty: obj_double, mat: obj_double =
None, alpha: float = 1) -> obj_double:
444 this method performs the symmetric rank 1 operation A = alpha * x * y T + A
446 def host2device(self, data: numpy.ndarray[numpy.float64]) ->
None:
453 def init_prng(self, arg0: int) -> int: ...
460 def magma_gemv(self, vectx: obj_double, alpha: float = 1, op: str =
'N', vecty: obj_double =
None, beta: float = 0) -> obj_double:
462 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
464 def nrm2(self, incx: int = 1) -> float:
469 def prng(self, arg0: float, arg1: str, arg2: float, arg3: float) -> int: ...
471 def prng(self, arg0: float, arg1: str, arg2: float) -> int: ...
473 def prng(self, arg0: str, arg1: float, arg2: float) -> int: ...
475 def prng(self, arg0: str, arg1: float) -> int: ...
477 def prng(self, arg0: str) -> int: ...
481 def prng_host(self, arg0: str, arg1: float) -> int: ...
483 def prng_host(self, arg0: str, arg1: float, arg2: float) -> int: ...
485 def random(self, seed: int = 1234, j: str =
'U') ->
None: ...
486 def random_host(self, seed: int = 1234, j: str =
'U') ->
None: ...
491 def reset(self) -> int:
495 def rot(self, arg0: obj_double, arg1: int, arg2: int, arg3: float, arg4: float) ->
None:
499 def scale(self, scale: float, incx: int = 1) ->
None:
503 def sum(self) -> float:
507 def swap(self, source: obj_double, incx: int = 1, incy: int = 1) ->
None:
511 def swap_ptr(self, ptr: obj_double) ->
None:
515 def symm(self, matB: obj_double, alpha: float = 1, matC: obj_double =
None, beta: float = 0, side: str =
'l', uplo: str =
'u') -> obj_double:
517 this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
519 def symv(self, vectx: obj_double, alpha: float = 1, uplo: str =
'l', vecty: obj_double =
None, beta: float = 0) -> obj_double:
521 this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
523 def syrk(self, fill: str =
'U', op: str =
'N', alpha: float = 1, matC: obj_double =
None, beta: float = 0) -> obj_double:
525 this method performs the symmetric rank- k update
527 def syrkx(self, matB: obj_double, fill: str =
'U', op: str =
'N', alpha: float = 1, matC: obj_double =
None, beta: float = 0) -> obj_double:
529 this method performs the symmetric rank- k update
535 def transpose(self, source: obj_double) -> int:
555 def d_ptr(self) -> int:
583 def o_data(self) -> float:
590 def shape(self) -> numpy.ndarray[numpy.int64]:
594 :type: numpy.ndarray[numpy.int64]
599 def __init__(self, context: context, h_data: numpy.ndarray[complex128]) ->
None:
606 def __init__(self, context: context, d_data: obj_double_complex) ->
None: ...
617 def aimax(self, incx: int = 1) -> int:
621 def aimin(self, incx: int = 1) -> int:
625 def copy(self, arg0: obj_double_complex, arg1: int, arg2: int) ->
None:
629 def copy_from(self, data: obj_double_complex, nb_elem: int = -1) ->
None:
633 def copy_into(self, dest: obj_double_complex, nb_elem: int = -1) ->
None:
647 def device2host(self, data: numpy.ndarray[complex128]) ->
None:
651 def fft(self, dest: obj_double_complex =
None, direction: int = 1) ->
None: ...
652 def host2device(self, data: numpy.ndarray[complex128]) ->
None:
659 def init_prng(self, arg0: int) -> int: ...
666 def prng(self, arg0: str, arg1: float, arg2: float) -> int: ...
668 def prng(self, arg0: str, arg1: float) -> int: ...
670 def prng(self, arg0: str) -> int: ...
671 def random(self, seed: int = 1234, j: str =
'U') ->
None: ...
672 def random_host(self, seed: int = 1234, j: str =
'U') ->
None: ...
677 def reset(self) -> int:
681 def swap(self, source: obj_double_complex, incx: int = 1, incy: int = 1) ->
None:
685 def swap_ptr(self, ptr: obj_double_complex) ->
None:
730 def shape(self) -> numpy.ndarray[numpy.int64]:
734 :type: numpy.ndarray[numpy.int64]
739 def __init__(self, context: context, h_data: numpy.ndarray[numpy.float32]) ->
None:
746 def __init__(self, context: context, d_data: obj_float) ->
None: ...
757 def aimax(self, incx: int = 1) -> int:
761 def aimin(self, incx: int = 1) -> int:
765 def asum(self, incx: int = 1) -> float:
769 def axpy(self, alpha: float, source: obj_float, incx: int = 1, incy: int = 1, offset: int = 0) ->
None:
773 def clip(self, data_min: float, data_max: float) ->
None:
777 def copy(self, arg0: obj_float, arg1: int, arg2: int) ->
None:
781 def copy_from(self, data: obj_float, nb_elem: int = -1) ->
None:
785 def copy_into(self, dest: obj_float, nb_elem: int = -1) ->
None:
799 def destroy_prng_host(self) -> int: ...
800 def device2host(self, data: numpy.ndarray[numpy.float32]) ->
None:
804 def dgmm(self, vectX: obj_float, alpha: float = 1, side: str =
'r', matC: obj_float =
None, incx: int = 1) -> obj_float:
806 this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
808 def dot(self, source: obj_float, incx: int = 1, incy: int = 1) -> float:
812 def fft(self, dest: obj_float =
None, direction: int = 1) ->
None: ...
813 def geam(self, matB: obj_float, opA: str =
'N', opB: str =
'N', alpha: float = 1, matC: obj_float =
None, beta: float = 0) -> obj_float:
815 this method performs the symmetric rank- k update
817 def gemm(self, matB: obj_float, op_a: str =
'N', op_b: str =
'N', alpha: float = 1, matC: obj_float =
None, beta: float = 0) -> obj_float:
819 this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta * matC
821 def gemv(self, vectx: obj_float, alpha: float = 1, op: str =
'N', vecty: obj_float =
None, beta: float = 0) -> obj_float:
823 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
825 def ger(self, vecty: obj_float, mat: obj_float =
None, alpha: float = 1) -> obj_float:
827 this method performs the symmetric rank 1 operation A = alpha * x * y T + A
829 def host2device(self, data: numpy.ndarray[numpy.float32]) ->
None:
836 def init_prng(self, arg0: int) -> int: ...
843 def magma_gemv(self, vectx: obj_float, alpha: float = 1, op: str =
'N', vecty: obj_float =
None, beta: float = 0) -> obj_float:
845 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
847 def nrm2(self, incx: int = 1) -> float:
852 def prng(self, arg0: float, arg1: str, arg2: float, arg3: float) -> int: ...
854 def prng(self, arg0: float, arg1: str, arg2: float) -> int: ...
856 def prng(self, arg0: str, arg1: float, arg2: float) -> int: ...
858 def prng(self, arg0: str, arg1: float) -> int: ...
860 def prng(self, arg0: str) -> int: ...
862 def prng_host(self, arg0: str) -> int: ...
864 def prng_host(self, arg0: str, arg1: float) -> int: ...
866 def prng_host(self, arg0: str, arg1: float, arg2: float) -> int: ...
868 def random(self, seed: int = 1234, j: str =
'U') ->
None: ...
869 def random_host(self, seed: int = 1234, j: str =
'U') ->
None: ...
878 def rot(self, arg0: obj_float, arg1: int, arg2: int, arg3: float, arg4: float) ->
None:
882 def scale(self, scale: float, incx: int = 1) ->
None:
890 def swap(self, source: obj_float, incx: int = 1, incy: int = 1) ->
None:
894 def swap_ptr(self, ptr: obj_float) ->
None:
898 def symm(self, matB: obj_float, alpha: float = 1, matC: obj_float =
None, beta: float = 0, side: str =
'l', uplo: str =
'u') -> obj_float:
900 this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
902 def symv(self, vectx: obj_float, alpha: float = 1, uplo: str =
'l', vecty: obj_float =
None, beta: float = 0) -> obj_float:
904 this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
906 def syrk(self, fill: str =
'U', op: str =
'N', alpha: float = 1, matC: obj_float =
None, beta: float = 0) -> obj_float:
908 this method performs the symmetric rank- k update
910 def syrkx(self, matB: obj_float, fill: str =
'U', op: str =
'N', alpha: float = 1, matC: obj_float =
None, beta: float = 0) -> obj_float:
912 this method performs the symmetric rank- k update
918 def transpose(self, source: obj_float) -> int:
938 def d_ptr(self) -> int:
966 def o_data(self) -> float:
973 def shape(self) -> numpy.ndarray[numpy.int64]:
977 :type: numpy.ndarray[numpy.int64]
982 def __init__(self, context: context, h_data: numpy.ndarray[numpy.complex64]) ->
None:
989 def __init__(self, context: context, d_data: obj_float_complex) ->
None: ...
1008 def copy(self, arg0: obj_float_complex, arg1: int, arg2: int) ->
None:
1012 def copy_from(self, data: obj_float_complex, nb_elem: int = -1) ->
None:
1016 def copy_into(self, dest: obj_float_complex, nb_elem: int = -1) ->
None:
1030 def device2host(self, data: numpy.ndarray[numpy.complex64]) ->
None:
1034 def fft(self, dest: obj_float_complex =
None, direction: int = 1) ->
None: ...
1035 def host2device(self, data: numpy.ndarray[numpy.complex64]) ->
None:
1049 def prng(self, arg0: str, arg1: float, arg2: float) -> int: ...
1051 def prng(self, arg0: str, arg1: float) -> int: ...
1053 def prng(self, arg0: str) -> int: ...
1054 def random(self, seed: int = 1234, j: str =
'U') ->
None: ...
1055 def random_host(self, seed: int = 1234, j: str =
'U') ->
None: ...
1064 def swap(self, source: obj_float_complex, incx: int = 1, incy: int = 1) ->
None:
1068 def swap_ptr(self, ptr: obj_float_complex) ->
None:
1072 def transpose(self, source: obj_float_complex) -> int:
1113 def shape(self) -> numpy.ndarray[numpy.int64]:
1117 :type: numpy.ndarray[numpy.int64]
1122 def __init__(self, context: context, h_data: numpy.ndarray[numpy.int32]) ->
None:
1129 def __init__(self, context: context, d_data: obj_int) ->
None: ...
1148 def asum(self, incx: int = 1) -> int:
1152 def axpy(self, alpha: int, source: obj_int, incx: int = 1, incy: int = 1, offset: int = 0) ->
None:
1156 def clip(self, data_min: int, data_max: int) ->
None:
1160 def copy(self, arg0: obj_int, arg1: int, arg2: int) ->
None:
1164 def copy_from(self, data: obj_int, nb_elem: int = -1) ->
None:
1168 def copy_into(self, dest: obj_int, nb_elem: int = -1) ->
None:
1182 def destroy_prng_host(self) -> int: ...
1187 def dgmm(self, vectX: obj_int, alpha: int = 1, side: str =
'r', matC: obj_int =
None, incx: int = 1) -> obj_int:
1189 this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
1191 def dot(self, source: obj_int, incx: int = 1, incy: int = 1) -> int:
1195 def fft(self, dest: obj_int =
None, direction: int = 1) ->
None: ...
1196 def geam(self, matB: obj_int, opA: str =
'N', opB: str =
'N', alpha: int = 1, matC: obj_int =
None, beta: int = 0) -> obj_int:
1198 this method performs the symmetric rank- k update
1200 def gemm(self, matB: obj_int, op_a: str =
'N', op_b: str =
'N', alpha: int = 1, matC: obj_int =
None, beta: int = 0) -> obj_int:
1202 this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta * matC
1204 def gemv(self, vectx: obj_int, alpha: int = 1, op: str =
'N', vecty: obj_int =
None, beta: int = 0) -> obj_int:
1206 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
1208 def ger(self, vecty: obj_int, mat: obj_int =
None, alpha: int = 1) -> obj_int:
1210 this method performs the symmetric rank 1 operation A = alpha * x * y T + A
1212 def host2device(self, data: numpy.ndarray[numpy.int32]) ->
None:
1220 def init_prng_host(self, arg0: int) -> int: ...
1226 def magma_gemv(self, vectx: obj_int, alpha: int = 1, op: str =
'N', vecty: obj_int =
None, beta: int = 0) -> obj_int:
1228 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
1230 def nrm2(self, incx: int = 1) -> int:
1235 def prng(self, arg0: int, arg1: str, arg2: float, arg3: float) -> int: ...
1237 def prng(self, arg0: int, arg1: str, arg2: float) -> int: ...
1239 def prng(self, arg0: str, arg1: float, arg2: float) -> int: ...
1241 def prng(self, arg0: str, arg1: float) -> int: ...
1243 def prng(self, arg0: str) -> int: ...
1245 def prng_host(self, arg0: str) -> int: ...
1247 def prng_host(self, arg0: str, arg1: int) -> int: ...
1249 def prng_host(self, arg0: str, arg1: int, arg2: int) -> int: ...
1251 def random(self, seed: int = 1234, j: str =
'U') ->
None: ...
1252 def random_host(self, seed: int = 1234, j: str =
'U') ->
None: ...
1257 def reset(self) -> int:
1261 def rot(self, arg0: obj_int, arg1: int, arg2: int, arg3: int, arg4: int) ->
None:
1265 def scale(self, scale: int, incx: int = 1) ->
None:
1269 def sum(self) -> int:
1273 def swap(self, source: obj_int, incx: int = 1, incy: int = 1) ->
None:
1277 def swap_ptr(self, ptr: obj_int) ->
None:
1281 def symm(self, matB: obj_int, alpha: int = 1, matC: obj_int =
None, beta: int = 0, side: str =
'l', uplo: str =
'u') -> obj_int:
1283 this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
1285 def symv(self, vectx: obj_int, alpha: int = 1, uplo: str =
'l', vecty: obj_int =
None, beta: int = 0) -> obj_int:
1287 this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
1289 def syrk(self, fill: str =
'U', op: str =
'N', alpha: int = 1, matC: obj_int =
None, beta: int = 0) -> obj_int:
1291 this method performs the symmetric rank- k update
1293 def syrkx(self, matB: obj_int, fill: str =
'U', op: str =
'N', alpha: int = 1, matC: obj_int =
None, beta: int = 0) -> obj_int:
1295 this method performs the symmetric rank- k update
1301 def transpose(self, source: obj_int) -> int:
1321 def d_ptr(self) -> int:
1356 def shape(self) -> numpy.ndarray[numpy.int64]:
1360 :type: numpy.ndarray[numpy.int64]
1365 def __init__(self, context: context, h_data: numpy.ndarray[numpy.uint32]) ->
None:
1372 def __init__(self, context: context, d_data: obj_uint) ->
None: ...
1391 def asum(self, incx: int = 1) -> int:
1395 def axpy(self, alpha: int, source: obj_uint, incx: int = 1, incy: int = 1, offset: int = 0) ->
None:
1399 def clip(self, data_min: int, data_max: int) ->
None:
1403 def copy(self, arg0: obj_uint, arg1: int, arg2: int) ->
None:
1407 def copy_from(self, data: obj_uint, nb_elem: int = -1) ->
None:
1411 def copy_into(self, dest: obj_uint, nb_elem: int = -1) ->
None:
1426 def device2host(self, data: numpy.ndarray[numpy.uint32]) ->
None:
1430 def dgmm(self, vectX: obj_uint, alpha: int = 1, side: str =
'r', matC: obj_uint =
None, incx: int = 1) -> obj_uint:
1432 this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
1434 def dot(self, source: obj_uint, incx: int = 1, incy: int = 1) -> int:
1438 def fft(self, dest: obj_uint =
None, direction: int = 1) ->
None: ...
1439 def geam(self, matB: obj_uint, opA: str =
'N', opB: str =
'N', alpha: int = 1, matC: obj_uint =
None, beta: int = 0) -> obj_uint:
1441 this method performs the symmetric rank- k update
1443 def gemm(self, matB: obj_uint, op_a: str =
'N', op_b: str =
'N', alpha: int = 1, matC: obj_uint =
None, beta: int = 0) -> obj_uint:
1445 this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta * matC
1447 def gemv(self, vectx: obj_uint, alpha: int = 1, op: str =
'N', vecty: obj_uint =
None, beta: int = 0) -> obj_uint:
1449 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
1451 def ger(self, vecty: obj_uint, mat: obj_uint =
None, alpha: int = 1) -> obj_uint:
1453 this method performs the symmetric rank 1 operation A = alpha * x * y T + A
1455 def host2device(self, data: numpy.ndarray[numpy.uint32]) ->
None:
1462 def init_prng(self, arg0: int) -> int: ...
1469 def magma_gemv(self, vectx: obj_uint, alpha: int = 1, op: str =
'N', vecty: obj_uint =
None, beta: int = 0) -> obj_uint:
1471 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
1473 def nrm2(self, incx: int = 1) -> int:
1478 def prng(self, arg0: int, arg1: str, arg2: float, arg3: float) -> int: ...
1480 def prng(self, arg0: int, arg1: str, arg2: float) -> int: ...
1482 def prng(self, arg0: str, arg1: float, arg2: float) -> int: ...
1484 def prng(self, arg0: str, arg1: float) -> int: ...
1486 def prng(self, arg0: str) -> int: ...
1488 def prng_host(self, arg0: str) -> int: ...
1492 def prng_host(self, arg0: str, arg1: int, arg2: int) -> int: ...
1494 def random(self, seed: int = 1234, j: str =
'U') ->
None: ...
1495 def random_host(self, seed: int = 1234, j: str =
'U') ->
None: ...
1500 def reset(self) -> int:
1504 def rot(self, arg0: obj_uint, arg1: int, arg2: int, arg3: int, arg4: int) ->
None:
1508 def scale(self, scale: int, incx: int = 1) ->
None:
1512 def sum(self) -> int:
1516 def swap(self, source: obj_uint, incx: int = 1, incy: int = 1) ->
None:
1520 def swap_ptr(self, ptr: obj_uint) ->
None:
1524 def symm(self, matB: obj_uint, alpha: int = 1, matC: obj_uint =
None, beta: int = 0, side: str =
'l', uplo: str =
'u') -> obj_uint:
1526 this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
1528 def symv(self, vectx: obj_uint, alpha: int = 1, uplo: str =
'l', vecty: obj_uint =
None, beta: int = 0) -> obj_uint:
1530 this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
1532 def syrk(self, fill: str =
'U', op: str =
'N', alpha: int = 1, matC: obj_uint =
None, beta: int = 0) -> obj_uint:
1534 this method performs the symmetric rank- k update
1536 def syrkx(self, matB: obj_uint, fill: str =
'U', op: str =
'N', alpha: int = 1, matC: obj_uint =
None, beta: int = 0) -> obj_uint:
1538 this method performs the symmetric rank- k update
1544 def transpose(self, source: obj_uint) -> int:
1564 def d_ptr(self) -> int:
1599 def shape(self) -> numpy.ndarray[numpy.int64]:
1603 :type: numpy.ndarray[numpy.int64]
1608 def __init__(self, context: context, h_data: numpy.ndarray[numpy.uint16]) ->
None:
1615 def __init__(self, context: context, d_data: obj_uint16) ->
None: ...
1626 def aimax(self, incx: int = 1) -> int:
1630 def aimin(self, incx: int = 1) -> int:
1634 def asum(self, incx: int = 1) -> int:
1638 def axpy(self, alpha: int, source: obj_uint16, incx: int = 1, incy: int = 1, offset: int = 0) ->
None:
1642 def clip(self, data_min: int, data_max: int) ->
None:
1646 def copy(self, arg0: obj_uint16, arg1: int, arg2: int) ->
None:
1650 def copy_from(self, data: obj_uint16, nb_elem: int = -1) ->
None:
1654 def copy_into(self, dest: obj_uint16, nb_elem: int = -1) ->
None:
1669 def device2host(self, data: numpy.ndarray[numpy.uint16]) ->
None:
1673 def dgmm(self, vectX: obj_uint16, alpha: int = 1, side: str =
'r', matC: obj_uint16 =
None, incx: int = 1) -> obj_uint16:
1675 this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
1677 def dot(self, source: obj_uint16, incx: int = 1, incy: int = 1) -> int:
1681 def fft(self, dest: obj_uint16 =
None, direction: int = 1) ->
None: ...
1682 def geam(self, matB: obj_uint16, opA: str =
'N', opB: str =
'N', alpha: int = 1, matC: obj_uint16 =
None, beta: int = 0) -> obj_uint16:
1684 this method performs the symmetric rank- k update
1686 def gemm(self, matB: obj_uint16, op_a: str =
'N', op_b: str =
'N', alpha: int = 1, matC: obj_uint16 =
None, beta: int = 0) -> obj_uint16:
1688 this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta * matC
1690 def gemv(self, vectx: obj_uint16, alpha: int = 1, op: str =
'N', vecty: obj_uint16 =
None, beta: int = 0) -> obj_uint16:
1692 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
1694 def ger(self, vecty: obj_uint16, mat: obj_uint16 =
None, alpha: int = 1) -> obj_uint16:
1696 this method performs the symmetric rank 1 operation A = alpha * x * y T + A
1698 def host2device(self, data: numpy.ndarray[numpy.uint16]) ->
None:
1705 def init_prng(self, arg0: int) -> int: ...
1712 def magma_gemv(self, vectx: obj_uint16, alpha: int = 1, op: str =
'N', vecty: obj_uint16 =
None, beta: int = 0) -> obj_uint16:
1714 this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vecty
1716 def nrm2(self, incx: int = 1) -> int:
1721 def prng(self, arg0: int, arg1: str, arg2: float, arg3: float) -> int: ...
1723 def prng(self, arg0: int, arg1: str, arg2: float) -> int: ...
1725 def prng(self, arg0: str, arg1: float, arg2: float) -> int: ...
1727 def prng(self, arg0: str, arg1: float) -> int: ...
1729 def prng(self, arg0: str) -> int: ...
1731 def prng_host(self, arg0: str) -> int: ...
1735 def prng_host(self, arg0: str, arg1: int, arg2: int) -> int: ...
1737 def random(self, seed: int = 1234, j: str =
'U') ->
None: ...
1738 def random_host(self, seed: int = 1234, j: str =
'U') ->
None: ...
1743 def reset(self) -> int:
1747 def rot(self, arg0: obj_uint16, arg1: int, arg2: int, arg3: int, arg4: int) ->
None:
1751 def scale(self, scale: int, incx: int = 1) ->
None:
1755 def sum(self) -> int:
1759 def swap(self, source: obj_uint16, incx: int = 1, incy: int = 1) ->
None:
1763 def swap_ptr(self, ptr: obj_uint16) ->
None:
1767 def symm(self, matB: obj_uint16, alpha: int = 1, matC: obj_uint16 =
None, beta: int = 0, side: str =
'l', uplo: str =
'u') -> obj_uint16:
1769 this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
1771 def symv(self, vectx: obj_uint16, alpha: int = 1, uplo: str =
'l', vecty: obj_uint16 =
None, beta: int = 0) -> obj_uint16:
1773 this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
1775 def syrk(self, fill: str =
'U', op: str =
'N', alpha: int = 1, matC: obj_uint16 =
None, beta: int = 0) -> obj_uint16:
1777 this method performs the symmetric rank- k update
1779 def syrkx(self, matB: obj_uint16, fill: str =
'U', op: str =
'N', alpha: int = 1, matC: obj_uint16 =
None, beta: int = 0) -> obj_uint16:
1781 this method performs the symmetric rank- k update
1787 def transpose(self, source: obj_uint16) -> int:
1842 def shape(self) -> numpy.ndarray[numpy.int64]:
1846 :type: numpy.ndarray[numpy.int64]
1849 class sparse_obj_double():
1850 def get_csr(self) -> object: ...
1853 def get_csr(self) -> object: ...
1857 def reset(self) -> None: ...
1858 def set_stream(self, arg0: device) ->
None: ...
1859 def start(self) -> None: ...
1860 def stop(self) -> None: ...
1862 def total_time(self) -> float:
1871 def potri_float(d_A: obj_float, d_res: obj_float =
None) ->
None:
1875 def potri_uint(d_A: obj_uint, d_res: obj_uint =
None) ->
None:
1879 def syevd_double(d_mat_a: obj_double, eigenvals: obj_double, d_U: obj_double =
None, computeU: bool =
True) ->
None:
1881 def syevd_double_complex(d_mat_a: obj_double_complex, eigenvals: obj_double_complex, d_U: obj_double_complex =
None, computeU: bool =
True) ->
None:
1883 def syevd_float(d_mat_a: obj_float, eigenvals: obj_float, d_U: obj_float =
None, computeU: bool =
True) ->
None:
1885 def syevd_float_complex(d_mat_a: obj_float_complex, eigenvals: obj_float_complex, d_U: obj_float_complex =
None, computeU: bool =
True) ->
None:
1887 def syevd_int(d_mat_a: obj_int, eigenvals: obj_int, d_U: obj_int =
None, computeU: bool =
True) ->
None:
1889 def syevd_uint(d_mat_a: obj_uint, eigenvals: obj_uint, d_U: obj_uint =
None, computeU: bool =
True) ->
None:
1891 def syevd_uint16(d_mat_a: obj_uint16, eigenvals: obj_uint16, d_U: obj_uint16 =
None, computeU: bool =
True) ->
None:
1899 __version__ =
'5.4.4'
#define set_active_device(new_device, silent)
None __init__(self, int value)
None __setstate__(self, int state)
bool __ne__(self, object other)
time_buffer
type of : obj_double
cudaRuntimeGetVersion
type of : int
activeRealDevice
type of : int
int set_active_device_force(self, int arg0)
driverVersion
type of : int
active_device
type of : int
None __init__(self, numpy.ndarray[complex128] h_data, MemAlloc malloc_type=MemAlloc.MA_MALLOC)
TODO.
None __init__(self, numpy.ndarray[numpy.float64] h_data, MemAlloc malloc_type=MemAlloc.MA_MALLOC)
TODO.
None __init__(self, numpy.ndarray[numpy.complex64] h_data, MemAlloc malloc_type=MemAlloc.MA_MALLOC)
TODO.
None __init__(self, numpy.ndarray[numpy.float32] h_data, MemAlloc malloc_type=MemAlloc.MA_MALLOC)
TODO.
None random_host(self, int seed=1234, str j='U')
None reduceCub(self)
TODO.
int prng(self, str arg0, float arg1, float arg2)
int del_stream(self)
TODO.
None copy_from(self, obj_double_complex data, int nb_elem=-1)
TODO.
None random(self, int seed=1234, str j='U')
int add_stream(self)
TODO.
None swap_ptr(self, obj_double_complex ptr)
TODO.
int aimax(self, int incx=1)
TODO.
None copy(self, obj_double_complex arg0, int arg1, int arg2)
TODO.
None __init__(self, context context, numpy.ndarray[complex128] h_data)
TODO.
None swap(self, obj_double_complex source, int incx=1, int incy=1)
TODO.
None fft(self, obj_double_complex dest=None, int direction=1)
int wait_all_streams(self)
TODO.
int wait_stream(self, int steam)
TODO.
None copy_into(self, obj_double_complex dest, int nb_elem=-1)
TODO.
int transpose(self, obj_double_complex source)
TODO.
None device2host(self, numpy.ndarray[complex128] data)
TODO.
int aimin(self, int incx=1)
TODO.
obj_double syrkx(self, obj_double matB, str fill='U', str op='N', float alpha=1, obj_double matC=None, float beta=0)
this method performs the symmetric rank- k update
obj_double symv(self, obj_double vectx, float alpha=1, str uplo='l', obj_double vecty=None, float beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
int del_stream(self)
TODO.
object to_cupy(self)
TODO.
None swap_ptr(self, obj_double ptr)
TODO.
obj_double gemv(self, obj_double vectx, float alpha=1, str op='N', obj_double vecty=None, float beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
obj_double gemm(self, obj_double matB, str op_a='N', str op_b='N', float alpha=1, obj_double matC=None, float beta=0)
this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta...
int wait_stream(self, int steam)
TODO.
None device2host(self, numpy.ndarray[numpy.float64] data)
TODO.
int transpose(self, obj_double source)
TODO.
int add_stream(self)
TODO.
None random(self, int seed=1234, str j='U')
int destroy_prng_host(self)
obj_double magma_gemv(self, obj_double vectx, float alpha=1, str op='N', obj_double vecty=None, float beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
int aimin(self, int incx=1)
TODO.
int prng_host(self, str arg0)
int aimax(self, int incx=1)
TODO.
None copy(self, obj_double arg0, int arg1, int arg2)
TODO.
int prng_montagn(self, float arg0)
obj_double symm(self, obj_double matB, float alpha=1, obj_double matC=None, float beta=0, str side='l', str uplo='u')
this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
None host2device(self, numpy.ndarray[numpy.float64] data)
TODO.
None copy_into(self, obj_double dest, int nb_elem=-1)
TODO.
obj_double syrk(self, str fill='U', str op='N', float alpha=1, obj_double matC=None, float beta=0)
this method performs the symmetric rank- k update
obj_double geam(self, obj_double matB, str opA='N', str opB='N', float alpha=1, obj_double matC=None, float beta=0)
this method performs the symmetric rank- k update
None __init__(self, context context, numpy.ndarray[numpy.float64] h_data)
TODO.
int wait_all_streams(self)
TODO.
int prng(self, float arg0, str arg1, float arg2, float arg3)
None scale(self, float scale, int incx=1)
TODO.
float dot(self, obj_double source, int incx=1, int incy=1)
TODO.
None rot(self, obj_double arg0, int arg1, int arg2, float arg3, float arg4)
TODO.
obj_double ger(self, obj_double vecty, obj_double mat=None, float alpha=1)
this method performs the symmetric rank 1 operation A = alpha * x * y T + A
None reduceCub(self)
TODO.
None fft(self, obj_double dest=None, int direction=1)
None swap(self, obj_double source, int incx=1, int incy=1)
TODO.
int init_prng_host(self, int arg0)
None copy_from(self, obj_double data, int nb_elem=-1)
TODO.
None random_host(self, int seed=1234, str j='U')
float nrm2(self, int incx=1)
TODO.
obj_double dgmm(self, obj_double vectX, float alpha=1, str side='r', obj_double matC=None, int incx=1)
this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
None init_reduceCub(self)
TODO.
int del_stream(self)
TODO.
int aimax(self, int incx=1)
TODO.
None __init__(self, context context, numpy.ndarray[numpy.complex64] h_data)
TODO.
int wait_all_streams(self)
TODO.
None fft(self, obj_float_complex dest=None, int direction=1)
None host2device(self, numpy.ndarray[numpy.complex64] data)
TODO.
None copy(self, obj_float_complex arg0, int arg1, int arg2)
TODO.
None copy_into(self, obj_float_complex dest, int nb_elem=-1)
TODO.
int wait_stream(self, int steam)
TODO.
int add_stream(self)
TODO.
None copy_from(self, obj_float_complex data, int nb_elem=-1)
TODO.
None device2host(self, numpy.ndarray[numpy.complex64] data)
TODO.
None init_reduceCub(self)
TODO.
int aimin(self, int incx=1)
TODO.
obj_float gemv(self, obj_float vectx, float alpha=1, str op='N', obj_float vecty=None, float beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
int prng_montagn(self, float arg0)
obj_float magma_gemv(self, obj_float vectx, float alpha=1, str op='N', obj_float vecty=None, float beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
None __init__(self, context context, numpy.ndarray[numpy.float32] h_data)
TODO.
None scale(self, float scale, int incx=1)
TODO.
None rot(self, obj_float arg0, int arg1, int arg2, float arg3, float arg4)
TODO.
obj_float syrkx(self, obj_float matB, str fill='U', str op='N', float alpha=1, obj_float matC=None, float beta=0)
this method performs the symmetric rank- k update
None swap_ptr(self, obj_float ptr)
TODO.
obj_float gemm(self, obj_float matB, str op_a='N', str op_b='N', float alpha=1, obj_float matC=None, float beta=0)
this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta...
obj_float syrk(self, str fill='U', str op='N', float alpha=1, obj_float matC=None, float beta=0)
this method performs the symmetric rank- k update
int wait_stream(self, int steam)
TODO.
None copy_into(self, obj_float dest, int nb_elem=-1)
TODO.
int prng(self, float arg0, str arg1, float arg2, float arg3)
obj_float ger(self, obj_float vecty, obj_float mat=None, float alpha=1)
this method performs the symmetric rank 1 operation A = alpha * x * y T + A
int add_stream(self)
TODO.
int aimax(self, int incx=1)
TODO.
object to_cupy(self)
TODO.
None random_host(self, int seed=1234, str j='U')
None init_reduceCub(self)
TODO.
None random(self, int seed=1234, str j='U')
obj_float symm(self, obj_float matB, float alpha=1, obj_float matC=None, float beta=0, str side='l', str uplo='u')
this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
None copy(self, obj_float arg0, int arg1, int arg2)
TODO.
obj_float symv(self, obj_float vectx, float alpha=1, str uplo='l', obj_float vecty=None, float beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
None copy_from(self, obj_float data, int nb_elem=-1)
TODO.
None swap(self, obj_float source, int incx=1, int incy=1)
TODO.
int del_stream(self)
TODO.
None host2device(self, numpy.ndarray[numpy.float32] data)
TODO.
None device2host(self, numpy.ndarray[numpy.float32] data)
TODO.
int prng_host(self, str arg0)
int aimin(self, int incx=1)
TODO.
int transpose(self, obj_float source)
TODO.
float nrm2(self, int incx=1)
TODO.
None reduceCub(self)
TODO.
None fft(self, obj_float dest=None, int direction=1)
int wait_all_streams(self)
TODO.
int init_prng_host(self, int arg0)
int init_prng_host(self, int arg0)
None copy_from(self, obj_int data, int nb_elem=-1)
TODO.
None fft(self, obj_int dest=None, int direction=1)
obj_int syrk(self, str fill='U', str op='N', int alpha=1, obj_int matC=None, int beta=0)
this method performs the symmetric rank- k update
obj_int ger(self, obj_int vecty, obj_int mat=None, int alpha=1)
this method performs the symmetric rank 1 operation A = alpha * x * y T + A
None swap(self, obj_int source, int incx=1, int incy=1)
TODO.
None init_reduceCub(self)
TODO.
obj_int magma_gemv(self, obj_int vectx, int alpha=1, str op='N', obj_int vecty=None, int beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
None copy(self, obj_int arg0, int arg1, int arg2)
TODO.
int nrm2(self, int incx=1)
TODO.
obj_int dgmm(self, obj_int vectX, int alpha=1, str side='r', obj_int matC=None, int incx=1)
this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
None random(self, int seed=1234, str j='U')
int prng(self, int arg0, str arg1, float arg2, float arg3)
int prng_host(self, str arg0)
None rot(self, obj_int arg0, int arg1, int arg2, int arg3, int arg4)
TODO.
object to_cupy(self)
TODO.
None __init__(self, context context, numpy.ndarray[numpy.int32] h_data)
TODO.
int destroy_prng_host(self)
int aimax(self, int incx=1)
TODO.
None copy_into(self, obj_int dest, int nb_elem=-1)
TODO.
obj_int gemm(self, obj_int matB, str op_a='N', str op_b='N', int alpha=1, obj_int matC=None, int beta=0)
this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta...
None reduceCub(self)
TODO.
obj_int symv(self, obj_int vectx, int alpha=1, str uplo='l', obj_int vecty=None, int beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
int dot(self, obj_int source, int incx=1, int incy=1)
TODO.
obj_int gemv(self, obj_int vectx, int alpha=1, str op='N', obj_int vecty=None, int beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
obj_int geam(self, obj_int matB, str opA='N', str opB='N', int alpha=1, obj_int matC=None, int beta=0)
this method performs the symmetric rank- k update
int wait_stream(self, int steam)
TODO.
obj_int syrkx(self, obj_int matB, str fill='U', str op='N', int alpha=1, obj_int matC=None, int beta=0)
this method performs the symmetric rank- k update
int aimin(self, int incx=1)
TODO.
None host2device(self, numpy.ndarray[numpy.int32] data)
TODO.
int asum(self, int incx=1)
TODO.
int add_stream(self)
TODO.
int wait_all_streams(self)
TODO.
None random_host(self, int seed=1234, str j='U')
int del_stream(self)
TODO.
int prng_montagn(self, float arg0)
obj_int symm(self, obj_int matB, int alpha=1, obj_int matC=None, int beta=0, str side='l', str uplo='u')
this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
None swap_ptr(self, obj_int ptr)
TODO.
None scale(self, int scale, int incx=1)
TODO.
None axpy(self, int alpha, obj_int source, int incx=1, int incy=1, int offset=0)
TODO.
None device2host(self, numpy.ndarray[numpy.int32] data)
TODO.
None clip(self, int data_min, int data_max)
TODO.
int transpose(self, obj_int source)
TODO.
None random(self, int seed=1234, str j='U')
int wait_all_streams(self)
TODO.
obj_uint16 symm(self, obj_uint16 matB, int alpha=1, obj_uint16 matC=None, int beta=0, str side='l', str uplo='u')
this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
int wait_stream(self, int steam)
TODO.
None swap(self, obj_uint16 source, int incx=1, int incy=1)
TODO.
None scale(self, int scale, int incx=1)
TODO.
None __init__(self, context context, numpy.ndarray[numpy.uint16] h_data)
TODO.
None rot(self, obj_uint16 arg0, int arg1, int arg2, int arg3, int arg4)
TODO.
None random_host(self, int seed=1234, str j='U')
int transpose(self, obj_uint16 source)
TODO.
obj_uint16 syrk(self, str fill='U', str op='N', int alpha=1, obj_uint16 matC=None, int beta=0)
this method performs the symmetric rank- k update
object to_cupy(self)
TODO.
None reduceCub(self)
TODO.
None swap_ptr(self, obj_uint16 ptr)
TODO.
obj_uint16 symv(self, obj_uint16 vectx, int alpha=1, str uplo='l', obj_uint16 vecty=None, int beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
obj_uint16 syrkx(self, obj_uint16 matB, str fill='U', str op='N', int alpha=1, obj_uint16 matC=None, int beta=0)
this method performs the symmetric rank- k update
int prng_host(self, str arg0)
None host2device(self, numpy.ndarray[numpy.uint32] data)
TODO.
int del_stream(self)
TODO.
obj_uint geam(self, obj_uint matB, str opA='N', str opB='N', int alpha=1, obj_uint matC=None, int beta=0)
this method performs the symmetric rank- k update
None reduceCub(self)
TODO.
None axpy(self, int alpha, obj_uint source, int incx=1, int incy=1, int offset=0)
TODO.
None swap_ptr(self, obj_uint ptr)
TODO.
int transpose(self, obj_uint source)
TODO.
int prng(self, int arg0, str arg1, float arg2, float arg3)
int init_prng_host(self, int arg0)
int nrm2(self, int incx=1)
TODO.
None copy_into(self, obj_uint dest, int nb_elem=-1)
TODO.
None swap(self, obj_uint source, int incx=1, int incy=1)
TODO.
int prng_montagn(self, float arg0)
int wait_stream(self, int steam)
TODO.
obj_uint dgmm(self, obj_uint vectX, int alpha=1, str side='r', obj_uint matC=None, int incx=1)
this method performs one of the matrix‐marix operations matC = diag(vectX)*matA if side='l'
None init_reduceCub(self)
TODO.
None scale(self, int scale, int incx=1)
TODO.
None clip(self, int data_min, int data_max)
TODO.
obj_uint gemm(self, obj_uint matB, str op_a='N', str op_b='N', int alpha=1, obj_uint matC=None, int beta=0)
this method performs one of the matrix‐marix operations matC = alpha * op_a(matA) * op_b(matB) + beta...
obj_uint gemv(self, obj_uint vectx, int alpha=1, str op='N', obj_uint vecty=None, int beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
None copy(self, obj_uint arg0, int arg1, int arg2)
TODO.
None rot(self, obj_uint arg0, int arg1, int arg2, int arg3, int arg4)
TODO.
obj_uint symm(self, obj_uint matB, int alpha=1, obj_uint matC=None, int beta=0, str side='l', str uplo='u')
this method performs one of the matrix‐marix operations matC = alpha * matA * matB + beta * C
None random_host(self, int seed=1234, str j='U')
None __init__(self, context context, numpy.ndarray[numpy.uint32] h_data)
TODO.
None copy_from(self, obj_uint data, int nb_elem=-1)
TODO.
int aimax(self, int incx=1)
TODO.
None device2host(self, numpy.ndarray[numpy.uint32] data)
TODO.
obj_uint syrkx(self, obj_uint matB, str fill='U', str op='N', int alpha=1, obj_uint matC=None, int beta=0)
this method performs the symmetric rank- k update
obj_uint syrk(self, str fill='U', str op='N', int alpha=1, obj_uint matC=None, int beta=0)
this method performs the symmetric rank- k update
int dot(self, obj_uint source, int incx=1, int incy=1)
TODO.
int wait_all_streams(self)
TODO.
int destroy_prng_host(self)
object to_cupy(self)
TODO.
obj_uint ger(self, obj_uint vecty, obj_uint mat=None, int alpha=1)
this method performs the symmetric rank 1 operation A = alpha * x * y T + A
None random(self, int seed=1234, str j='U')
int add_stream(self)
TODO.
obj_uint magma_gemv(self, obj_uint vectx, int alpha=1, str op='N', obj_uint vecty=None, int beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * op(mat) * vectx + beta * vec...
None fft(self, obj_uint dest=None, int direction=1)
int aimin(self, int incx=1)
TODO.
obj_uint symv(self, obj_uint vectx, int alpha=1, str uplo='l', obj_uint vecty=None, int beta=0)
this method performs one of the matrix‐vector operations vecty = alpha * mat * vectx + beta * vecty
int asum(self, int incx=1)
TODO.
None potri_uint16(obj_uint16 d_A, obj_uint16 d_res=None)
None syevd_float_complex(obj_float_complex d_mat_a, obj_float_complex eigenvals, obj_float_complex d_U=None, bool computeU=True)
None syevd_double(obj_double d_mat_a, obj_double eigenvals, obj_double d_U=None, bool computeU=True)
None potri_float(obj_float d_A, obj_float d_res=None)
None syevd_int(obj_int d_mat_a, obj_int eigenvals, obj_int d_U=None, bool computeU=True)
None potri_uint(obj_uint d_A, obj_uint d_res=None)
None deviceSync(str arg0, int arg1)
None potri_int(obj_int d_A, obj_int d_res=None)
None syevd_float(obj_float d_mat_a, obj_float eigenvals, obj_float d_U=None, bool computeU=True)
None syevd_uint(obj_uint d_mat_a, obj_uint eigenvals, obj_uint d_U=None, bool computeU=True)
None syevd_uint16(obj_uint16 d_mat_a, obj_uint16 eigenvals, obj_uint16 d_U=None, bool computeU=True)
None potri_double(obj_double d_A, obj_double d_res=None)
None syevd_double_complex(obj_double_complex d_mat_a, obj_double_complex eigenvals, obj_double_complex d_U=None, bool computeU=True)